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1 Introduction

Ultrasound (US), “a type of sound we cannot hear” [1], can be classified as frequencies over 20 kHz, the
human threshold for hearing. During the past several decades, medical US has established itself as a
widely-used tool in the area of diagnostic imaging. Its main advantages over other common imaging
modalities, such as X-rays, computed tomography (CT) scans, and magnetic resonance imaging (MRI),
include low-cost, computational speed, and portability [1]. Moreover, US is non-invasive and does not
emit ionizing radiation, which could produce harmful biological side effects that accumulate over time.
There are, however, some key limitations to the use of US as an imaging technique. A high level of
skill and experience is needed to both acquire and interpret US images. This is primarily due to the
fact that the quality of the obtained images, measured in terms of resolution and contrast, is relatively
poor, especially in comparison with the previously mentioned imaging techniques. Moreover, the quality
worsens when attempting to image at deeper depths. This occurs because of the attenuation of US waves
during propagation through human tissue. There are several sources of losses: reflection, refraction, 1/r
or spreading loss, scattering, and absorption [1]. As these numerous sources of attenuation can lead to
low-quality images, an expert is needed to correctly understand what has been captured and displayed
in a typical 2D US image. Furthermore, a correct handling of the probe is required in order to properly
acquire the desired anatomical structures as a very constraint protocol and path may be necessary.
Through the use of 3D US imaging, volumetric information can be obtained, which can help relax
the constraints on the handling of the probe and alleviate the difficulty of correctly interpreting the
measurements as a 3D visualization is possible.

As US has already proven to be portable and cheap, the integration of 3D imaging in commercial
products could broaden its possible uses. The UltrasoundToGo project intends to do just this by devel-
oping “a high performance, low-power signal processing platform for US imaging applications, targeting
future 3D portable US systems” [2]. One objective of this project is to facilitate the acquisition and
analysis of US images so that general practitioners and unskilled operators could make use of it and
consult a specialist if need be. However, 3D imaging is faced with a significant limitation: data storage
and the associated computation required by the increase in data. According to [3], a 3D image requires
about 2.5 × 1012 delay values/s for reconstruction at 15 frames/s, and this is well beyond the capabil-
ities of any available off-chip memory interface. The LTS5 laboratory at EPFL has proposed and is
currently developing a solution to this problem by reducing the amount of data required to reconstruct
a meaningful image. This is accomplished through compressive sensing (CS) techniques.

The goal of this semester project was to incorporate these techniques with a real US system as to
provide a proof-of-concept of CS reconstruction for 2D US plane wave (PW) imaging. As UltrasoundToGo
is funded by the Nano-Tera Initiative, the results of this project were also demonstrated at the 2016
Nano-Tera Annual Plenary Meeting, which took place from April 25-26 [4].

This report has the following structure: Chapter 2 provides a brief summary of the relevant theory in
US imaging and CS; Chapter 3 presents the ULA-OP system for US imaging [5] and what was developed
during this project in order to create a demonstrator of 2D CS-based PW imaging; Chapter 4 provides
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1 INTRODUCTION

several results from the developed demonstrator and discusses a few key observations and limitations
that can be attained from them; and Chapter 5 summarizes the main accomplishments and findings of
the work from this semester project and discusses future work.
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2 Theoretical Background

This section provides a general overview of the relevant theory in US and CS. A more detailed description
of these topics can be found in the referenced literature.

2.1 Ultrasound Imaging

As previously mentioned, US waves are frequencies that we cannot hear; they are above what the human
ear can perceive. For the use of medical imaging, the typical range of used frequencies is from 1 to
15 MHz [1]. The reason why US can provide a rather accurate representation of tissue geometry is due to
the fact that the speed of sound can be approximated as c = 1540 m s−1 for most soft tissues [1], i.e. the
speed of sound does not vary significantly when it goes through different soft tissue media in the human
body. Moreover, after using an array of transducers, i.e. a probe, to emit US waves, we can coherently
sum the reflected waves received by the same probe to image inside the human body. This summation
of received waveforms is known as beamforming and can amplify the signal-to-noise ratio in a desired
direction [6].

TANTER AND FINK: ULTRAFAST IMAGING IN BIOMEDICAL ULTRASOUND 105

responded to a virtual ultrasound source located behind 
the array [35]. In addition, Nikolov et al. studied virtual 
ultrasound sources located behind the array in synthetic 
aperture imaging [38]. Each transmission corresponded to 
a subaperture that was composed of elements firing at 
different times to generate a diverging wave. They used 
multiple transmit elements (typically ~10) and only a few 
emissions (4 to 8) to increase the frame rate [38], which 
resulted in a compromise between ultrafast imaging (full 
array aperture) and synthetic aperture imaging (single el-
ement aperture). Similarly, bridging the two concepts of 
ultrafast plane-wave imaging and synthetic aperture imag-
ing, McLaughlin and colleagues proposed a broad-beam 
scanning approach [39], [40] which was based on trans-
mit beams that focused on regions (called zones). These 
zones were much broader than conventional line-per-line 
acquisitions. For 3-D fast imaging, Hossack et al. recently 
proposed 2-D array beamforming, which is based on sepa-
rable line array beamforming operations that allow for 
increased frame rate and energy efficiency in hand-held 
devices [41].

Today, after more than 25 years of intensive investiga-
tion, this technology has begun to move out of academic 
labs and become incorporated into commercially available 
clinical products. Indeed, ultrafast plane-wave imaging 
has been employed in the first ultrafast clinical scanner, 
the Aixplorer system, since 2008 (Supersonic Imagine, Aix 
en Provence, France). Also, the broad-beam technology is 
being used in the clinical Zonare Z.one scanner (Zonare, 
Mountain View, CA). Finally, other devices, such as the 
Verasonics platform (Verasonics, Redmond, WA), have 
been commercialized for use in academic research labs.

III. THE CONCEPT OF PLANE-WAVE IMAGING  
AND PLANE-WAVE COMPOUNDING

Plane-wave imaging represents a genuine change in 
the medical ultrasound paradigm. Instead of transmitting 
focused beams, which scan the whole region of interest 
line-per-line, ultrafast imaging is obtained by transmitting 
plane (or unfocused) waves which scan in a single transmit 
event over the whole region of interest. This method typi-
cally increases the frame rate more than 100-fold. How-
ever, in transient elastography, this huge increase in frame 
rate was initially achieved through a compromise in image 
quality [15]. This degradation of quality mainly affected 
the image contrast rather than the resolution. Because 
the goal of this imaging modality was to track tissue dis-
placement induced by shear wave propagation, this loss in 
resolution was an acceptable price compared with the ad-
vantages provided by ultrafast frame rates [16]–[18]. Sev-
eral articles have thoroughly discussed the differences in 
contrast and resolution obtained when using conventional 
plane-wave imaging, and plane-wave compounding [27], 
[42], [43].

Coherent plane-wave compounding has many advan-
tages because it provides an image of a full region of in-
terest for each ultrasonic transmission using all array el-
ements. First, the transmission of a plane wave on the 
whole array aperture generates a much higher amplitude 
signal than synthetic aperture imaging. Second, the inson-
ification of the whole region of interest for each transmit-
ted plane wave permits the construction of high-quality 
ultrasonic images with a limited number of compounded 
plane waves because the acquisition is performed within a 

Fig. 2. Conventional focused and ultrafast ultrasound imaging sequences for a typical medical imaging setup (4-cm deep region of interest): (a) 
conventional focused imaging (128 focused beams and 4 focal depths leading to ~25 fps), (b) plane-wave imaging (~18 000 fps), (c) plane-wave com-
pounding with 17 angles (~1000 fps), and (d) plane-wave compounding with 40 angles (~350 fps). 

Figure 2.1 Comparing methods for B-mode imaging. Left-most image corresponds to the conventional method
of insonifiying one scan line at a time. The following three images each demonstrate plane wave imaging with a
different amount of insonifications, as indicated at the top of each image. Taken from [7].
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2 THEORETICAL BACKGROUND

2.1.1 Conventional Imaging Method

The most common diagnostic image produced by US waves is the B-mode image, short for Brightness-
mode, as the brightness is proportional to the echo amplitude [1]. A conventional B-mode image is
created by imaging one scan (vertical) line at a time in order to create a 2D image. This process is
known as delay-and-sum (DAS) beamforming. Each line requires an insonification, i.e. a transmission of
US waves by the probe, focused on that particular lateral section. The conventional process for creating
a B-mode image can be seen in the left-most image of Figure 2.1. The frame rate of this approach is
upper bounded by:

FRmax = c

2NZ , (2.1)

where N is the number of lines and Z is the image depth in meters. The frame rate of DAS beamforming
can be severely hampered by the desired image depth and the desired resolution, which determines the
number of lines and potential focal points along each line.

2.1.2 Plane Wave Imaging

One alternative method to B-mode imaging that has recently garnered a lot of attention is plane wave
(PW) imaging. With this method, a single insonification can be used to image the whole area of interest,
thus allowing for ultrafast frame rates [8]. However, one PW insonification is generally not sufficient as
the resulting image has low contrast. The image second from the left in Figure 2.1 shows the result of
one PW insonification. The contrast for this one PW insonification is clearly less than the contrast for
the conventional B-mode imaging method (left-most image of Figure 2.1).

Through the use of coherent PW compounding, multiple insonifications can be used to significantly
improve the contrast of the image while keeping the number of insonifications low enough so that high
frame rates are still achieved [9]. The two images on the right of Figure 2.1 show that by increasing
the number of PW insonifications, the contrast of the image can be significantly improved while still
achieving much higher frame rates than the conventional B-mode imaging method. For this reason,
coherent PW imaging for B-mode imaging was implemented and investigated in this project.

Plane Wave Image Reconstruction for a Single Angle

As previously mentioned, PW imaging can use a single insonification to image the whole region of interest.
However, in order to properly beamform and measure the intensity at a certain point, the time-of-flight
needs to be applied as a delay to each of the signals measured by the M transducers, i.e. channels,
so that the signal values can be summed coherently. Figure 2.2 provides a visualization of the distance
traveled by a steered plane wave to the point (xi, zi) and ultimately reflected to a transducer at (xm, 0)1.

θ
x

z

(xi, zi)

dbdf

xm

Figure 2.2 Steered plane wave time-of-flight visualization. Adapted from [9].

1When referring to the position of a transducer, the z value is dropped as it is always 0.
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2 THEORETICAL BACKGROUND

The forward distance to point (xi, zi) is given by:

df = zi cos θ + xi sin θ, (2.2)

where θ is the angle of the emitted plane wave with respect to one end of the transducer array. The
backward distance to reach a transducer at xm is given by:

db =
√
z2
i + (xi − xm)2. (2.3)

Therefore, the total time-of-flight can be computed by dividing the total distance by the speed of sound
in the medium c:

τxi,zi,xm
= df + db

c
= zi cos θ + xi sin θ +

√
z2
i + (xi − xm)2

c
. (2.4)

In order to obtain the value at the point (xi, zi), theM signal values at τxi,zi,xm
for the according channel

at xm are averaged in order to produce the corresponding intensity:

Fθ(xi, zi) = 1
M

M−1∑
m=0

sm(t− τxi,zi,xm
), (2.5)

where Fθ is the resulting beamformed image from a PW steered by angle θ in degrees and sm is the
signal measured by the mth channel at xm.

Coherent Plane Wave Compounding

One PW insonification is generally not enough to achieve a desirable contrast. Therefore, it is usually
necessary to apply coherent PW compounding [9]. If we have K insonifications at different θk angles
resulting in Fθk

corresponding images, the value of the final image F at the point (xi, zi) is given by:

F (xi, yi) = 1
K

K∑
k=1

Fθk
(xi, zi). (2.6)

The positive effects of compounding in improving contrast can be seen from Figure 2.1 and from results
obtained by our demonstrator in Section 4.2.

Post-Processing

After compounding, a few crucial post-processing steps need to be performed to F in order to produce
the B-mode image. The beamformed signal F is typically known in the US community as a Radio
Frequency (RF) signal. It is a band-pass signal whose bandwidth B is typically centered around the
frequency of the probe as shown in Figure 2.3. Therefore, sampling at a high frequency fs leads to
more data than what is necessary to describe the acquired signal. The common approach for reducing

Johan Kirkhorn: Introduction to IQ demodulation of RF-data

September 15, 1999 Page 5 of 13

3 Sampling of band-pass signals

3.1 Introduction
The Nyquist sampling theorem states that to get a unique representation of the frequency
content of a signal, the signal must be sampled at a rate twice the frequency of the highest
frequency component of the signal.

The received RF-signal from an ultrasound transducer is a band-pass signal. The relative
bandwidth of the transducer is usually less than 100%, typically 50-70%. The percentage is
the ratio of the bandwidth to the center frequency of the transducer. The bandwidth is the
frequency range where the sensitivity of the transducer is above a certain level. For one-way
response, this level is usually defined as 3 dB below the level at the most sensitive frequency.

Figure 2 illustrates the frequency spectrum of the received RF signal from a 2.5 MHz probe
with bandwidth B less than 100% of the center frequency. The RF signal is real-valued, which
means that the spectrum for the negative frequencies is a mirrored replica of the spectrum for
the positive frequencies. The sampling frequency (fs) is 20 MHz, meaning that the signal
contain a unique representation of frequencies between 0 and half the sampling rate (10
MHz). The upper limit is usually referred to as the Nyquist limit, or the Nyquist frequency.

B

Nyquist
frequency

=
f
s
/2

-10 10-2.5 2.51.25

3.75f [MHz]

Bandwidth
of interest

Figure 2. Band pass signal from an ultrasound transducer

In our example, the transducer is sensitive in a band less than 2.5 MHz wide and centered
around 2.5 MHz. This means that all frequency content of interest lies between 1.25 and 3.75
MHz. Sampling at 20 MHz (as done in the System Five), will therefore be an “overkill” in
terms of amount of data to be transferred and stored. Without loss of information, the
sampling rate could be reduced to about 7.5 MHz. Because the sampling rate in the System
Five is fixed in hardware, this is not easy to do. One could decimate the RF-signal by a factor
2, and achieve a sampling frequency of 10 MHz, which would be an improvement, but not
optimal.

A smarter approach for reducing the amount of data without loosing essential information is
to apply a complex base-band modulation technique with bandwidth reduction known as IQ-
demodulation.

Another issue is, that for suppression of quantization noise during analog to digital
conversion, it is fortunate to keep the sampling rate as high as possible to obtain a better
Signal-to-Noise-Ratio (SNR).

Figure 2.3 Frequency spectrum of an RF signal acquired by a 2.5 MHz probe. Taken from [10].
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2 THEORETICAL BACKGROUND

the amount of data without losing essential information is by applying a complex base-band modulation
technique with bandwidth reduction known as IQ-demodulation [10]. It usually consists of three steps:

1. Down-mixing - shifting the positive half of the spectrum so that it is centered at 0 Hz, i.e. baseband;
2. Low-pass filtering - remove the negative half of the spectrum and noise outside the desired band-

width;
3. Decimation - obtain the necessary amount of sample in order to satisfy the Nyquist criterion.

We will denote the image after post-processing as I.

Visualization

Before displaying the B-mode image, I needs to be normalized to obtain In and then log-compressed as
follows:

BmodedB = 20 log10 In. (2.7)

2.2 Compressive Sensing

In recent years, CS has gained a lot popularity in the field of diagnostic imaging. It is already well-
established in current commercial MRI technology [11] and has garnered interest in CT scans in order to
reduce patient exposure to ionizing radiation [12]. In the realm of US imaging, CS has been investigated
due to its potential in yielding higher frame rates by reducing data storage and transfer [13].

Before the introduction of CS, the widely-accepted approach towards acquiring data has been Nyquist’s
theorem of sampling at least twice the highest frequency component. However, this approach does not
assume any prior on the structure of the signal that one is trying to acquire. Moreover, it tends to be
the case in medical imaging that we can expect certain structures in the final image. For example, in
US imaging, common structures include anechoic and hyperechoic objects, strong point reflectors, and
speckle. Different priors in the form of a basis or a pre-dictionary can be used to extract such structures
from under-sampled data through the CS framework.

2.2.1 Compressive Sensing Basics

Sparsity and Incoherence

CS relies on two principles: sparsity in the signal of interest and incoherence in the sensing modality [14].
Sparsity refers to the idea that the number of degrees of freedom is much smaller than the size of the
discrete measurement. Moreover, a signal x is K−sparse if it can be expressed in terms of some basis or
pre-defined dictionary Ψ as:

x = Ψs, (2.8)

where s ∈ RN is a vector of weights and its number of non-zero components K is much smaller than N ,
i.e. K � N [15]. The basis or dictionary Ψ is referred to as the representation matrix.

The second core principle of CS, namely incoherence, requires that the objects having a sparse
representation in Ψ must be spread out in the domain in which they are acquired [14]. If the signal
which is sparse in Ψ has a dense representation in the sensing domain Φ, an under-sampling of the data
in the sensing domain should be sufficient to reconstruct the original signal in the representation domain.
This phenomenon of incoherence can be observed from Figure 2.4. Even though the under-sampled data
in the FFT domain produces a noisy version of the original signal when we take it back to the image
domain through the IFFT (yielding a dirac with low amplitude noise), using the constraint of sparsity
we can recover the original signal (a single dirac).
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1186 Lustig et al.

FIG. 3. Transform-domain sparsity
of images. (a) Axial T1 weighted brain
image; (b) axial 3D contrast enhanced
angiogram of the peripheral leg. The
DCT, wavelet, and finite-differences
transforms were calculated for all the
images (Left column). The images
were then reconstructed from a sub-
set of 5, 10, and 20% of the largest
transform coefficients.

long as the transform is also applied in the slice dimension.
Hence, it is possible to exploit some of the sparsity in the
slice dimension as well. Figure 5a, b shows that undersam-
pling each slice differently has reduced peak sidelobes in
the TPSF compared to undersampling the slices the same

way. However, it is important to mention that for wavelets,
randomly undersampling in the hybrid ky − z space is not
as effective, in terms of reducing the peak sidelobes, as
randomly undersampling in a pure 2D k-space (Fig. 5c).
The method of multislice 2DFT will work particularly well

FIG. 4. (a) The PSF of random 2D k -space undersampling. (b) The wavelet TPSF of random 2D Fourier undersampling. FDWT and IDWT
stand for forward and inverse discrete wavelet transform. Wavelet coefficients are band-pass filters and have limited support both in space
and frequency. Random k -space undersampling results in incoherent interference in the wavelet domain. The interference spreads mostly
within the wavelet coefficients of the same scale and orientation.

Figure 2.4 A dirac in the image domain is spread out in the frequency domain. Random sampling in the
frequency domain should be able to reconstruct the dirac under the CS framework. Taken from [11].

The coherence between the sensing basis Φ and the representation basis Ψ can be written as:

µ(Φ,Ψ) =
√
N max

1≤k,j,≤N
|〈φk, ψj〉|, (2.9)

where N is the number of basis vectors in Ψ. Incoherence implies a low value for µ [14].

Minimum `1 Norm Reconstruction

The `2 norm is a typical choice for minimizing error, such as in linear regression. However, the `2 norm
measures signal energy and not signal sparsity. The `0 norm, on the other hand, counts the number
of non-zero entries in a vector, which is ideal for measuring signal sparsity. Unfortunately, minimizing
an `0 norm is combinatorial, requiring an exhaustive search for the K non-zero entries in a length N

vector [15].
Fortunately, minimization with the `1 norm can exactly recover K-sparse signals and closely approx-

imate compressible2 signals with high probability [15]. The choice of the `1 norm allows for convex
relaxation of the `0 optimization problem so that already-known algorithms for solving `1 optimization
problems can be used, such as Orthogonal Matching Pursuit or ADMM (Alternative Direction Method
of Multipliers) [16].

2.2.2 Problem Formulation for Ultrasound Imaging

In the case of US imaging, it is our observed beamformed signal F ∈ RN×M that we assume to have a
sparse representation rather than the original signal X ∈ RN×M , i.e. the reflected echoes. The values
N and M refer to the number of samples, which is related to the depth and to the number of channels
respectively.

Let us assume that f ∈ RP , a vectorized version of F with a length of P = N ×M , has a sparse
representation in Ψ. In order to induce this sparsity, we wish to minimize the following `1 norm:

min
f̂∈RP

‖Ψf̂‖1 subject to ‖x− Φf̂‖2 ≤ β, (2.10)

where x ∈ RP is a vectorized version of X, Φ is the sensing basis, and the `2 constraint promotes signal
integrity according to a tolerance level β. The sensing operation Φ is actually related to the inverse of
the beamforming operation, which is used to obtain the beamformed data F from the raw data X. In
this report, raw data refers to the signals acquired by each channel before beamforming. This inverse
problem tends to be ill-posed but the sparse prior on f regularizes the solution.

An `1 minimization, however, is not as straightforward to solve as an `2 minimization as there is no

2A signal x is compressible if the representation in (2.8) has just a few large coefficients and many small coefficients [15].
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2 THEORETICAL BACKGROUND

closed-form solution such as the Wiener Filter for `2. Therefore, we use the ADMM approach to solve
the `1 minimization iteratively. A detailed description of this method can be found in [16]. It is worth
noting, however, that there are two important parameters for this method: the number of iterations and
a threshold level βL which sets to zero anything in the range [−βL, βL] at each iteration step. This is
known as soft-thresholding. A higher βL induces more sparsity while a low βL is less selective.

2.2.3 Requirements for Ultrasound Imaging

There are two main requirements for the use of CS in US reconstruction:

1. Finding an appropriate sensing strategy to acquire the echoes with a reduced number of channels;
2. Finding the proper representation basis to model the acquired signals.

For the first requirement, two sensing strategies were investigated and implemented in the final demon-
strator: uniform and random sampling with varying amounts of active, i.e. used, channels. A uniform
spacing of channels keeps the same distance between sensors. Random spacing spans the whole array by
using the outermost channels; however, the rest of the sensors are selected randomly.

For the second requirement, several bases are considered: Dirac (simple case where Ψ is equal to
identity), Orthogonal Wavelet [17], Undecimated Wavelet [18], and SARA [19].

xTherefore, the important CS parameters for the demonstrators are:

1. The spacing and number of active elements of the probe;
2. The representation basis - Ψ;
3. The signal integrity threshold - β (see Equation 2.10);
4. The ADMM parameters - βL soft-threshold and number of iterations.

2.3 Full Process for Conventional and Compressive Sensing Based
Plane Wave Imaging

Below is the full procedure for both conventional and CS-based PW imaging:

1. Transmit and acquire the raw data of K different PW insonifications, each corresponding to a
unique angle θk:

1.1. Transmit the same pulse (whose parameters include central frequency, shape, apodization
window, and number of cycles) from every channel with the appropriate delay in order to
simulate a PW emitted with a steered angle of θk;

1.2. Wait for and measure the raw data according to the desired range: [rmin, rmax].

2. Obtain the beamformed image Fθk
for each angle θk:

2.1. Pre-process the raw data by applying a high-pass filter to remove any offset and a low-pass
filter to remove electrical noise;

2.2. Apply the desired reconstruction process to the pre-processed raw data according to the angle
θk, using either the conventional single PW imaging approach (Section 2.1.2) or the CS-based
approach (Section 2.2.2) with a selected representation basis Ψ.

3. Coherently sum the K beamformed images Fθk
in order to obtain the compounded image F .

4. Post-process F using IQ demodulation to obtain I.
5. Normalize and log-compress I to obtain BmodedB , which is then visualized.
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3 Demonstrator

As the UltrasoundToGo is funded by the Nano-Tera Initiative, the ongoing work has been presented every
year at the Nano-Tera Annual Plenary Meeting. For this year’s edition, it was the goal of the LTS5 lab
to build a proof-of-concept of 2D CS-based PW imaging method. For this reason, a demonstrator was
developed with the available hardware and software tools. The final product could also be used for
educational purposes in order to familiarize oneself with US and CS.

Section 3.1 describes our complete physical and technological setup. Section 3.2 explains the available
hardware and software provided by the Ultrasound Advanced Open Platform (ULA-OP) system [5].
Section 3.3 describes the software that we developed especially for conventional and CS-based PW
imaging.

3.1 Complete Setup

Our physical setup can be seen in Figure 3.1. It consists of the following components:

1. ULA-OP system which can control up to 64 channels simultaneously;
2. Esaote PA230 128-element US probe (0.170 mm pitch and 2.25 MHz central frequency);
3. PC to control the ULA-OP device;
4. Two screens for visualization;
5. CIRS Model 054GS General Purpose US Phantom and US coupling gel;

A compressed beamforming framework for 2D 
ultrasound imaging

UltrasoundToGo RTD 2013

Adrien Besson, Rafael E. Carrillo, Dimitris Perdios, Eric Bezzam, Florian Martinez, Marcel Arditi and Jean-Philippe Thiran

Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Switzerland

(128 elements, 0.195 mm pitch, 7.8 MHz central frequency, 31.2 MHz sampling frequency). 

Conclusions
• Compressed beamforming allows for the reconstruction of high quality

images from a reduced number of echo signals
• It uses compressed-sensing-based algorithms coupled with novel acq-

uisitions schemes for high quality image reconstruction
• The proposed sensing strategy is compatible with any ultrasound probe

Results on an in vivo carotid
• In vivo carotid imaged using a Verasonics system equipped with a linear 

probe (128 elements, 0.195mm-pitch, 7.8 MHz center frequency) 

• Great improvement of image quality with compressed beamforming

On-going work
• GPU implementation of the image reconstruction
• Extension of the proposed framework to 3D beamforming and to

diverging transmit waves
• Porting the framework to Python

Compressed beamforming demonstrator

• Using MATLAB®, we can configure various settings for the transmission of 
steered plane waves and the reception of echo signals:
• Desired range
• Transmitted pulse

• User can compare image reconstruction methods: compressed sensing or 
classical reconstruction

• Our experimental setup includes a CIRS Model 054GS General Purpose 
Ultrasound Phantom, a 128-element probe, and an ULA-OP system 
developed by the MSD Lab in Firenze

1 Source: David, G., Robert, J., Zhang, B. and Laine, A. (2015). Time domain compressive beam forming of ultrasound signals. The Journal of the Acoustical Society of America, 137(5), pp.2773-2784.

Introduction and motivation
• Reducing the memory footprint as well as the data rate are two key points

for the portability of ultrasound devices
• Classical image reconstruction implies:

• Storage of echo signals coming from Nt sensors
• Storage of Nt delays per image pixel

• Memory footprint and data rate can be optimized
• The proposed approach is based on acquiring the echoes with a reduced

number of transducer elements and on reconstructing a high-quality
image with a compressed-sensing-based algorithm

Solving the ill-posed inverse problem
• We exploit the property that the images are sparse in a given model Ψ.

Using the ℓ1-norm as the sparsity measure, we can reconstruct our signal
using:

min
𝑠
Ψ𝑡𝑠 1 𝑠. 𝑡 𝑟𝑢 − 𝐻𝑢𝑠 < 𝜀

• The model used in the study is a concatenation of wavelet bases

Ultrasound propagation as an inverse problem
• Express ultrasound propagation as an inverse problem:

Continuous domain

θ
xi

t

Steered Plane wave

Scatterers distribution

Ultrasound probe

Discrete domain

• r(xi, t) are the echo signals
• s(x, z) is the desired image

W is an interpolation kernel

𝑟 𝑥𝑖, 𝑡 =  
𝑥,𝑧 ∈ Ω
𝑠 𝑥, 𝑧 𝑑𝑥𝑑𝑧

Ω = 𝑥, 𝑧 | 𝑐𝑡 − 𝑧 cos 𝜃 − 𝑥 sin 𝜃 2 − 𝑥 − 𝑥𝑖 2 − 𝑧2 = 0

𝑅𝑖𝑗 =  
𝑘,𝑙 ∈Ω𝑑

𝑊𝑘𝑙𝑆𝑘𝑙

𝒓 = 𝐻𝒔 + 𝒏

The new sensing strategy
• The new sensing strategy is based on acquiring the echoes with a

reduced number of sensors
• Two options:

• Uniform spacing: we keep the same spacing between the sensors
(low sidelobes but high grating lobes)

• Random spacing: the spacing between the sensors is random
(high sidelobes but low grating lobes)

Classical acquisition1 Compressed acquisition

Compressed beamforming is an ill-posed problem since 𝐻𝑢 has far more rows than
columns.

The new sensing strategy

𝒓 = 𝐻𝒔 + 𝒏 𝑟𝑢 = 𝐻𝑢𝒔 + 𝒏𝒖

Figure 3.1 Physical setup for the 2D CS-based PW imaging demonstrator.
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3 DEMONSTRATOR

6. Articulated arm and fixing clamps for maintaining the probe in a fixed position;
7. Support and stand for the CIRS phantom and the articulated arm.

In terms of software, the ULA-OP system includes two main user applications:

1. ULA-OP Starter for selecting a pre-defined imaging mode;
2. ULA-OP Modula for real-time visualization.

The ULA-OP hardware and software is explained with more detail in Section 3.2. For the demonstrator,
we developed our own MATLAB software for US PW imaging (conventional and CS-based) that is
compatible with the ULA-OP system. Through a Graphical User Interface (GUI), the following can be
configured by a user:

1. Real-time visualization with the ULA-OP Modula application using the conventional B-mode imag-
ing method. This is used for positioning the probe according to the user’s preference (right-most
computer screen in Figure 3.1).

2. Both CS-based and conventional PW imaging. This is computed off-line and the results are dis-
played afterwards (left-most computer screen in Figure 3.1).

A detailed description of the developed software for 2D US PW imaging can be found in Section 3.3.

3.2 Background on the ULA-OP System

The ULA-OP system was developed by the Microelectronics Systems Design Laboratory (MSDLab) at
the University of Florence. According to the MSDLab, “ULA-OP was designed to allow the tests of new
US methods including original beamforming strategies” [20]. This flexibility for incorporating original
beamforming strategies is one of the reasons the ULA-OP system was selected. In this section, we
will briefly describe the hardware and software already provided by the ULA-OP system. A detailed
description can be found in the ULA-OP User Manual [20].

3.2.1 Hardware

The ULA-OP hardware consists of a metal container of dimensions 33 cm × 23 cm × 18 cm that can
be connected to a PC via USB 2.0. At the exterior of the container, there is a connector to attach a
probe that can contain up to 192 elements. Inside the ULA-OP metal container, there are four Field-
Programmable Gate Arrays (FPGA) that can each be assigned 16 channels of the probe, thus allowing
the ULA-OP system to simultaneously control up to 64 (4×16) channels. These four FPGAs are devoted
to applying conventional beamforming methods on the ULA-OP hardware itself.

3.2.2 Software

Two GUI applications are provided by the ULA-OP system in order to apply and visualize conventional
US imaging techniques: the ULA-OP Starter and the ULA-OP Modula. The developers of ULA-OP
have also created a MATLAB interface in order to define arbitrary US imaging methods and to launch
a visualization from the MATLAB console.

ULA-OP Starter for Selecting a Mode

The ULA-OP device performs the transmission (TX) of US signals and reception (RX) of raw data
through what is termed as a mode. A mode “identifies the probe, the TX-RX beamforming methods
and TX sequences, the RX processing algorithm, and the display windows used in the real-time” [20].
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3 DEMONSTRATOR

The ULA-OP Starter application is used to operate the ULA-OP system under a pre-defined mode or
one defined by a user.

Configuring a Mode

The following files are needed to define a mode:

1. Probe configuration file (*.wks), which specifies extensive information about a specific US probe,
such as the pitch1 and the number of transducers, in order to correctly perform focalization and
beamforming in a real-time scenario. A very important specification also made with this file is the
pin mapping, which maps the channels of the probe to the 64 memory blocks in the FPGAs.

2. Configuration file (*.cfg), which identifies the name of the mode, links to the necessary *.ula

files for setting TX and RX parameters, sets the parameters for saving, and sets the parameters
for the real-time visualization.

3. TX/RX strategy file (*.ula), which specifies TX and RX parameters, such as number of elements,
apodization, and focus.

In order to create an arbitrary imaging mode, which is required for our demonstrator since PW imaging
is not already available on the ULA-OP system, the following files are also required:

1. BF TX file (*.bft), which can be used to specify an arbitrary TX scheme and/or personalized
waveforms.

2. BF RX file (*.bfr), which can be used to specify an arbitrary RX scheme, such as defining delay
and apodization waveforms.

A detailed description of each file and what parameters can be set is provided in the ULA-OP User
Manual [20].

A software tool called UlaOpConfigManager makes it possible to read and edit the *.cfg file. It can
be launched from the ULA-OP Starter interface. From this tool, it is also possible to edit the *.ula

file(s) by opening the TxRxStrategyEditor. The BF TX and BF RX files can be created by using the BF
generator, a MATLAB application with a GUI.

ULA-OP Modula for Real-Time Visualization

When launching a mode through the ULA-OP Starter application, it is possible to provide a real-time vi-
sualization of the mode’s results through the ULA-OP Modula application. As previously mentioned, the
*.cfg file is used to configure what is displayed. Through the GUI of the ULA-OP Modula application,
it is possible to save the raw data and/or the beamformed data.

Linking Between MATLAB and the ULA-OP System

With the UOLink MATLAB class it is possible to create a link between MATLAB and the ULA-
OP system. It can be used within MATLAB to open the ULA-OP Modula application for real-time
visualization and to save raw data and/or beamformed data.

3.3 Custom Software for the Demonstrator

Despite the multitude of software tools provided by the ULA-OP developers, they do not provide a
convenient way of creating a mode for PW imaging. Moreover, the FPGAs in the ULA-OP system are

1The distance between the centers of transducers.
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3 DEMONSTRATOR

Figure 3.2 GUI for the developed software for 2D CS-based PW imaging.

only able to perform conventional beamforming algorithms, such as DAS. Therefore, it was necessary
to develop a software that could generate the required configuration files for a PW imaging mode (both
conventional and CS-based) and then transfer the raw data to the computer for processing. We decided
to develop our demonstrator in MATLAB as it is the only language that can interface with the ULA-OP
system, by using the previously mentioned UOLink class. A MATLAB GUI was also developed so that
a user could conveniently set a few of the parameters for PW imaging and CS.

Section 3.3.1 describes which parameters can be set by the GUI; Section 3.3.2 specifies additional
parameters that can be set from a MATLAB main script; and Section 3.3.3 explains the main ULA-OP
configuration issues that were resolved during our development process.

3.3.1 Graphical User Interface

A MATLAB GUI was developed in order to have a user-friendly demonstrator at the 2016 Nano-Tera
Annual Plenary Meeting. The following parameters can be set from it:

1. Desired imaging range [rmin, rmax];
2. Percentage of elements to use (of a 128-element probe);
3. Uniform or random spacing of elements;
4. Transmission pulse (central frequency, number of cycles, apodization window);
5. Angles of multiple PWs (linearly spaced);
6. βL parameter for the ADMM process (basis is hard-coded as Orthogonal Wavelet).

The demonstrator GUI is meant to be used as follows (refer to Figure 3.2):

1. Apply US coupling gel to the probe and to the surface on which the probe will be pressed against.
2. On the GUI, set the Image Properties for selecting a particular range and the Transmit Parameters

for specifying the desired transmit pulse.
3. Press the Preview button to open the ULA-OP Modula application for a real-time visualization of

the region being imaged by the probe. Adjust and lock the probe to the desired position with the
articulated arm.

4. Set the Receive Parameters, the Plane Wave Settings, and the Compressed Sensing fields of the GUI.
The window at the bottom left of the GUI shows which elements are active (in green) according
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3 DEMONSTRATOR

to the entries for Receive Parameters.
5. The conventional and CS-based PW imaging approaches can be performed off-line and compared

by pressing the Run button. After completing both processes, a MATLAB figure is produced,
showing the reconstruction for each method.

3.3.2 Full Capabilities in MATLAB

For the GUI, certain parameters were fixed as they did not need to be adjusted for the purpose of the
Nano-Tera demonstrator. The main processing script that is called by the GUI when pressing Run has
much more flexibility in setting the TX and RX settings. In particular, it can set the following (as well
as those parameters that can be specified by the GUI):

1. Transmission pulse shape;
2. Arbitrary selection of elements for TX and RX;
3. Arbitrary angles for the multiple plane waves;
4. Additional CS parameters (β for signal integrity, the Ψ basis in which the beamformed signal is

sparse, and number of iterations).

The full procedure of the main processing script is described below (the GUI follows the same procedure
when pressing the Run button):

1. The user specifies their desired parameters at the top of the script (or in the GUI itself when using
this tool).

2. The required configuration files are written: the *.cfg, *.ula, *.bft, and *.bfr files.
3. A link is created between MATLAB and the ULA-OP system with the UOLink interface.
4. The process described in Section 2.3 is performed for both conventional and CS-based PW imaging,

using methods of the UOLink interface for acquisition and custom functions for the beamforming.
5. The results for both conventional and CS-based PW imaging are displayed side-by-side in a single

MATLAB figure.

3.3.3 Main ULA-OP Configuration Issues and Solutions

The ULA-OP system did not allow complete flexibility due to some hardware constraints. The main
issues are described here as well as our solution to these limitations.

Data handling

In order to apply our own beamforming method, the received raw data needs to be transfered to and
saved on the disk of the PC that the ULA-OP is connected to. This is because the FPGAs in the ULA-
OP system cannot be used to compute the CS-based beamforming for PW imaging. Unfortunately, the
ULA-OP system does not provide a manner to transfer the raw data to the RAM of the computer. This
introduces considerable latency as the data needs to be first transfered over USB 2.0 and then written
to memory.

Nevertheless, the already available UOLink MATLAB interface allows the user to conveniently save
various types of data at different points of the imaging scheme. We are interested in the Pre-beamforming
12bit data format (denoted with the extension *.rff12). Through our main script, we are able to specify
this data format and in the GUI implementation, this parameter is hard-coded. Another important file
that gets saved to disk, alongside the *.rff12 file, is the *.uos file. While the *.rff12 file contains all
the received raw data for each emitted PW and for each active channel, the *.uos file contains important
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3 DEMONSTRATOR

information that will allow us to correctly read and reorder the acquired data file. In particular, we are
interested in the field FirstBlock within the *.uos file.

When the ULA-OP system starts running, it cycles through the specified TX/RX schemes while
continuously incrementing an index. Although the ULA-OP system wraps around to follow the same
order of TX and RX schemes, the index being incremented starts at zero but does not wrap around.
When the raw data begins to be stored, the index of the first recorded raw data is written into the
field FirstBlock within the *.uos file. From this value and the number of TX/RX schemes (in our
case the number of steered PWs), we can deduce which angle corresponds to each set of raw data stored
in the *.rff12 file. A simple reordering of the raw data is done in order to have the first set of raw
data correspond to the first steered angle, the second set of raw data correspond to the second steered
angle, etc.

Selection of active elements

Only 64 elements of a probe can be simultaneously controlled by the ULA-OP system. However, in order
to take advantage of all 128 elements of our probe, we use the Sequencer field of the *.cfg file. The
Sequencer field allows multiple TX/RX strategies (each defined by a unique *.ula file) to be applied in
a sequential order. Therefore, in order to access all elements of a probe, we can use a time-multiplexing
approach by transmitting and receiving with all possible combinations of sets of 64 elements. In the
case of our probe, we only need two sets if we want to use all 128 elements, and the Sequencer should
cycle between four TX/RX strategies. Below is an example for the time-multiplexing approach with the
Sequencer if we were to divide the channels into odd and even sets:

1. Transmit with odd set, receive with odd set;
2. Transmit with odd set, receive with even set;
3. Transmit with even set, receive with even set;
4. Transmit with even set, receive with odd set.

In reality, it is not actually possible to divide the 128 elements into odd and even sets with the current
configuration. This is because certain combinations of elements are not possible due to the pin mapping
of probe channels to the FPGA, which is defined in the *.wks file. As previously mentioned, up to 64
channels of the probe can be controlled by the four FPGAs in the ULA-OP system. Each channel is
pre-assigned to a memory block in the FPGA, with the possibility of multiple channels being assigned to
a single memory block in the FPGA. Therefore, it is not possible to control channels that are assigned
to the same memory block in the FPGA. As the even elements of the first 64 channels are assigned to
the same memory blocks as the even elements in the last 64 channels (and the same is true for the odd
elements), it is not possible to divide the 128 elements into odd and even sets.

For our demonstrator, we avoid this problem of active element selection by raising an error when the
set of chosen active elements for a particular TX/RX scheme consists of any channels that are assigned
to the same memory block in the FPGAs.

Depth and range

For the *.rff12 format, the ULA-OP device can store up to 2688 samples per channel. As our sampling
frequency is fixed to 50 MHz and the speed of sound in our medium is assumed to be 1540 m s−1, 2688
samples corresponds to:

2688 samples × 1 s
50× 106 samples ×

1540 m
1 s = 82.8 mm. (3.1)
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3 DEMONSTRATOR

As sound needs to travel forward and backward, the ULA-OP can record a range of up to 41.4 mm.
Finally, we have noticed a strange phenomenon with respect to the allowed range for imaging: when

the minimum depth is more than half of the maximum depth, the ULA-OP system tends to run into
errors when recording the raw data. Therefore, in the case that the user defines a range that does not
satisfy this condition, we set the minimum depth to the following to avoid an acquisition error:

rmin = rmax/2. (3.2)

If this new minimum depth happens to be less than the one specified by the user, we acquire the data
with the new minimum depth in order to safely measure the raw data. Then we crop the acquired data
according to the user-specified minimum depth and process this cropped data.
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4 Results and Analysis

In this section, several results obtained from the demonstrator are presented and discussed. Each subsec-
tion describes and analyzes a different test case. The same transmit pulse, with the following parameters,
was used throughout the experimentation:

1. Transmit frequency of 3 MHz,
2. Number of cycles = 3.0,
3. Hamming apodization window.

Unless noted, only one PW (0° incident angle) is emitted. The Esaote PA230 128-element US probe
(0.170 mm pitch and 2.25 MHz central frequency) is used for TX and RX. We will be imaging the CIRS
Model 054GS General Purpose US Phantom. The structures inside the phantom can be seen in Figure 4.1.

Computerized Imaging Reference Systems, Inc. has been certifi ed by UL 
DQS Inc. to (ISO) 9001:2008. Certifi cate Registration No.10000905-QM08.

Phantom includes detachable 
scanning wells and air tight case.
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GENERAL PURPOSE ULTRASOUND PHANTOM Model 054GS

©2013 Computerized Imaging Reference Systems, Inc. All rights reserved.  
Specifications subject to change without notice. 
Publication: 054GS DS 022415

SPECIFICATIONS 

 CONTAINER 
   Dimensions: 17.8 x 12.7 x 20.3 cm 
   Weight: 11 lbs
   Material: ABS Housing 

 BACKGROUND GEL 
   Zerdine, solid elastic water-based 
   polymer
   Freezing Point:  0º C
   Melting Point:  Above 100º C

 ATTENUATION COEFFICIENT 
    0.5 dB/cm-MHz 
   0.7 dB/cm-MHz available upon request 

 SPEED OF SOUND 
   1540 m/s

 SCANNING WELL 
   15 x 10 x 1 cm deep

 SCANNING MEMBRANE 
   Dimensions: 6 x 11 x 0.5 cm 
   Material: Zerdine, high scatter

 VERTICAL PLANE TARGETS
   Number of Groups:  1
   Number of Targets Per Group: 10
   Depth Range:  18 cm
   Spacing: 2 cm
   Material: 0.1 mm Nylon monofilament 

 HORIZONTAL PLANE TARGETS 
   Number of Groups: 1
   Number of Targets Per Group: 7
   Depth Range: 9 cm
   Spacing: 2 cm
   Material: 0.1 mm Nylon monofilament
 
 NEAR FIELD TARGETS
   Number of Groups: 1 
   Number of Targets Per Group: 6
   Depth of Targets: 1, 2, 3, 4, 5 & 6 mm
   Material: 0.1 mm Nylon wire
 

AXIAL-LATERAL RESOLUTION TARGETS
   Number of Groups: 2
   Number of Targets Per Group: 12 
   Depth: 3 & 11 cm 
   3 cm Spacing: 0.25, 0.5, 1, 2, 3, & 4 mm
   11 cm Spacing: 1, 2, 3, 4, & 5 mm
   Material: 0.8 mm Nylon wire

 ANECHOIC CYLINDERS
   Number of Targets: 5
   Diameter of Target: 8 mm
   Contrast:  Anechoic

 GRAY-SCALE TARGETS
   Number of Targets: 6
   Diameter of Target: 8 mm
   Depth of Target: 4 cm
   Contrast:  Anechoic, -6 dB, -3 dB,  
   +3 dB, +6 dB hyperechoic

 MODEL 054GS INCLUDES
   General Purpose Ultrasound Phantom
   Carry Case
   Removable Scanning Wells
   User Guide
   48-month Warranty

1 2

3

Figure 4.1 CIRS Model 054GS General Purpose US Phantom [21].
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4 RESULTS AND ANALYSIS
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Figure 4.2 B-mode images of the region surrounded in red and labeled “1” in Figure 4.1. Random spacing, (a)
and (c), is compared with uniform spacing, (b) and (d), as a sensing scheme. Figures (a) and (b) use 12.5% of the
elements while Figures (c) and (d) use 25% of the elements. A single PW with 0° incident angle is transmitted
and the CS-based method with βL = 0.018 is used for image reconstruction.

4.1 Uniform vs. Random Sampling

As previously mentioned in Section 2.2.3, one key requirement for applying CS to US imaging is finding an
appropriate sensing strategy. At the moment we will fix the representation basis to Orthogonal Wavelets
and the βL threshold to 0.018.

Two approaches were considered with regards to transducer arrangement: uniform spacing, where
transducers are equidistant, and random spacing, where the outermost elements must be selected to span
the entire probe but rest are chosen randomly following a uniform distribution.

As can be seen from Figure 4.2, a uniform spacing of elements clearly outperforms a random spacing
of elements. The contrast for taking both 12.5% and 25% of the 128 elements is higher in the uniform
case. Moreover, it is known that sidelobes are minimized when using uniform sampling [22]. For this
reason, we use a uniform spacing of elements for the rest of the experiments.

4.2 Coherent Plane Wave Compounding

As mentioned in Section 2.1.2, a coherent summation of multiple PWs can increase the contrast of the
final image. In this section, we provide results to validate this claim. As our probe already has low
resolution, we decided to use just 5% of the probe elements so that the effect of compounding is more
pronounced.

Figure 4.3 shows the impact of coherent PW compounding for the CS-based method. Grating lobes
can be seen in the images for a single PW (Figure 4.3a) and three PWs (Figure 4.3b) as the strong reflector
at x = 0 cm and z = 4.1 cm can roughly be observed on either side of it at around x = −0.6 cm and
x = 0.6 cm. This is a common feature of under-sampled arrays, leading to these aliasing artifacts known
as grating lobes. Coherent compounding can diminish these grating lobes for under-sampled arrays and
in general reduce sidelobes, thus leading to an improvement in contrast. Steering a PW tilts the point
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(c) Five plane waves:
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Figure 4.3 B-mode images of the region surrounded in red and labeled “1” in Figure 4.1. A different number of
PWs is transmitted for each image to show the effect of compounding. The CS-based approach with βL = 0.018
is applied for image reconstruction. Only 5% of the probe elements (uniformly spaced) are used.
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Figure 4.4 B-mode images of the region surrounded in red and labeled “1” in Figure 4.1. The number of
uniformly-spaced active elements is varied for each image: 10%, 12.5%, 25%, and 50% of the 128 elements. A
single PW with 0° incident angle is transmitted and the CS-based PW beamforming method with βL = 0.018 is
used for image reconstruction.

-1 0 1
x [cm]

3

3.5

4

4.5

z
 [
c
m

]

-30

-25

-20

-15

-10

-5

0

(a) 10%

-1 0 1
x [cm]

3

3.5

4

4.5

z
 [
c
m

]

-30

-25

-20

-15

-10

-5

0

(b) 12.5%

-1 0 1
x [cm]

3

3.5

4

4.5

z
 [
c
m

]

-30

-25

-20

-15

-10

-5

0

(c) 25%

-1 0 1
x [cm]

3

3.5

4

4.5

z
 [
c
m

]

-30

-25

-20

-15

-10

-5

0

(d) 50%

Figure 4.5 B-mode images of the region surrounded in red and labeled “1” in Figure 4.1. The number of
uniformly-spaced active elements is varied for each image: 10%, 12.5%, 25%, and 50% of the 128 elements. A
single PW with 0° incident angle is transmitted and the conventional PW beamforming method is used for image
reconstruction.

spread function (PSF) of a point source so that the PSFs interfere constructively at the true position of
the point and destructively around the point to reduce grating lobes and sidelobes considerably.

4.3 Varying Number of Transducers

In this experiment, we observe how the number of active transducers affects the quality, in particular the
contrast, of the resulting image. As can be seen from Figure 4.4 and Figure 4.5, the CS-based approach
yields a higher contrast than the conventional PW imaging approach for each of the cases: 10%, 12.5%,
25%, and 50% of the 128 elements.

Furthermore, the contrast improves for both methods as the number of elements increases. When
we increase the number of active channels, this yields more measured signals that can be used by the
beamforming process. As beamforming is a coherent sum of signal values to estimate the intensity of a
certain point, more signals should produce a better estimate of the intensity. A similar phenomenon was
observed when increasing the number of PWs.

4.4 Choosing a Proper Representation Basis

At the moment, we have only been considering an anechoic object, and the Orthogonal Wavelet basis
worked rather well in imaging such a structure. We will now consider hyperechoic elements and strong
reflectors. For this experiment, we employ coherent PW compounding with five angles, linearly spaced
from −2° to 2°, and we use 12.5% of the probe elements.

As we can see from Figure 4.6a, the Orthogonal Wavelet (with a βL threshold of 0.04) is able to
capture the larger hyperechoic object on the left rather well but the contrast is not optimal for the
smaller strong reflector on the right. This object on the right, however, can be better modeled as a point
source using a Dirac basis for the CS-based approach.
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(a) Orthogonal Wavelet
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(b) Dirac, βL = 0.05
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(c) Dirac, βL = 0.5
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(d) Conventional

Figure 4.6 B-mode images of the region surrounded in blue and labeled “2’ in Figure 4.1. Five PWs, linearly
spaced from −2° to 2°, were transmitted using 12.5% elements of the probe, uniformly spaced. CS-based PW
beamforming with compounding is used in (a)-(c) for image reconstruction: (a) uses the Orthogonal Wavelet
basis with βL = 0.04, (b) uses the Dirac basis with βL = 0.05, and (c) uses the Dirac basis with βL = 0.05. The
last image (d) uses conventional PW beamforming with compounding.

Figures 4.6b-4.6c show the results for the same region when using the Dirac basis. Choosing a low
value for βL (Figure 4.6b), thus inducing less sparsity, is able to recover the larger hyperechoic object
and the strong reflector. However, the larger object significantly loses its structure. We can observe,
though, that the contrast of the strong reflector has improved, but there still remain significant sidelobes
around it. These artifacts can be suppressed by increasing βL, thus inducing more sparsity in the Dirac
basis, as can be seen in Figure 4.6c. The contrast of the strong reflector has significantly improved and
the sidelobes have diminished as compared to both Figures 4.6a and 4.6b but we have completely lost
the larger hyperechoic object.

We can conclude that the structure of the object needs to be taken into account in order to select the
appropriate representation basis. We have seen that the Orthogonal Wavelet basis is suitable for imaging
anechoic and larger hyperechoic objects. Another important structure that the Orthogonal Wavelet basis
can capture is speckle, which is granular texture that typically appears in a US image [1]. On the other
hand, the Dirac basis is more suitable for imaging point sources such as the one seen in Figure 4.6, as it
can significantly improve their contrast. However, the Dirac basis cannot capture textured objects such
as larger hyperechoic objects and speckle.

This trade-off in selecting the appropriate representation basis motivates an approach which decom-
poses the image into strong reflector components and the rest, which can be denoted as background
components. Such methods have already been investigated in the ultrasound community [23], [24];
however, not extensively in a CS setting.

4.5 Imaging Large Ranges

Finally, we analyze the performance of the CS-based approach when imaging larger ranges. As the
current approach does not take into account the changing PSF shape at deeper depths, it will encounter
difficulties for extended ranges.

At the moment, we have only considered ranges up to 2.5 cm so this issue has not arose. Unfortunately,
the ULA-OP device does not allow us to image ranges larger than 4 cm due to storage constraints, but
we will still be able to observe the limitations of the CS-based approach for this maximum allowable
range.

As before, we apply coherent PW imaging with five angles, linearly spaced from −2° to 2°, and we
use 12.5% elements of the probe, uniformly spaced. The Dirac basis is chosen for the CS-based approach
as the issue with imaging large ranges can be better observed with this choice of basis.

Figure 4.7 shows the results for imaging a similar region as in Figure 4.6 but extended by 1.5 cm for
a total range of 4 cm. Figure 4.7a shows the result when setting βL = 0.05. It can already be seen that
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(b) βL = 0.5
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Figure 4.7 B-mode images of the regions surrounded in blue and green and labeled “2’ and “3” in Figure 4.1.
Five PWs, linearly spaced from −2° to 2°, were transmitted using 12.5% elements of the probe, uniformly spaced.
CS-based PW beamforming with compounding is used in (a)-(b) for image reconstruction: (a) uses the Dirac
basis with βL = 0.05 and (b) uses the Dirac basis with βL = 0.5. The last image (c) uses conventional PW
beamforming with compounding.

the point source at around 5.7 cm has a smaller intensity than the nearer one at around 3.7 cm. This
is due to the fact that the PSF of the further strong reflector is more spread, i.e. the energy is less
concentrated at the center. When we increase βL to 0.5 in order to remove the sidelobes of the nearer
strong reflector (Figure 4.7b), we notice that the strong reflector at around 5.7 cm is completely removed.
Ideally, we would like to preserve both of the strong reflectors and remove the larger hyperechoic object
on the left centered around 3.7 cm. However, this is not possible with the current CS-based PW imaging
implementation as it assumes the same statistics for the entire image.

One solution to overcome this range limitation of the CS-based approach is to segment an image with
a large range into smaller segments with shorter ranges and apply a different soft threshold βL on each
segment. The goal is to choose a segment length such that the standard deviation, i.e. width, of the
PSF does not vary significantly within this limited range.

23



5 Conclusion

The project proved to be rather successful as we were able to build a user-friendly and smooth-running
demonstrator for the Nano-Tera Annual Plenary Meeting. Although we faced several challenges by the
ULA-OP system and are limited by certain hardware constraints, the final demonstrator serves its pur-
pose as a proof-of-concept for CS-based PW imaging and the possible advantages over conventional PW
imaging. Moreover, the demonstrator with its GUI can serve as a useful educational tool to familiarize
oneself with US and CS in a very hands-on and practical setting.

The demonstrator also revealed certain features that could be added to improve the performance of
the CS-based PW imaging method. The first is the introduction of a decomposition approach. It was
observed that choosing the appropriate basis can make a significant impact in imaging certain types
of structures, such as strong reflectors or more-textured elements, with high contrast. By building a
model which is able to take into account different basis for the different type of structures, the quality
of the final image could be improved. The second modification which could improve the performance
of the CS-based approach is segmenting the image into horizontal strips, particularly when dealing with
extended ranges. An approach that takes into account the increasing depth is needed since the PSF of
reflectors gradually changes at deeper depths. Therefore, the same statistics cannot be assumed for the
entire image. Both of these improvements for the CS-based PW imaging method are currently being
investigated and developed. Furthermore, they are being tested with the hopes of submitting results by
September 2016 for the IEEE IUS (International Ultrasonics Symposium) Plane-wave Imaging Challenge
in Medical UltraSound (PICMUS) [25].

With regards to the demonstrator, there are also improvements that could be made. One such modifi-
cation would be to add additional parameters that could be set from the GUI, such as the representation
basis for CS. Finally, it would be wonderful to open source the software we have developed in PW imag-
ing for the ULA-OP system in order to contribute to and receive feedback from the broader community
of scientists and researchers in the field of medical US imaging. This move to an open platform would
require porting the code to Python. Unfortunately, there is one huge drawback as the only way to in-
terface with the ULA-OP device is through MATLAB. However, if we could obtain the source code, the
shift towards an open source platform is certainly possible.

Acknowledgments

I would like thank Adrien Besson and Dimitri Perdios for their incredible patience and support during this
project. They were wonderful supervisors that helped ease my introduction into the fields of ultrasound
imaging and compressive sensing.

24



Bibliography

[1] T. Szabo, Diagnostic Ultrasound Imaging: Inside Out. Elsevier Academic Press, 2004.

[2] F. Angiolini. (2016). UltrasoundToGo, [Online]. Available: http://lsi.epfl.ch/page-93642-

en.html.

[3] A. Ibrahim, P. Hager, A. Bartolini, F. Angiolini, M. Arditi, L. Benini, et al., “Tackling the bottle-
neck of delay tables in 3d ultrasound imaging”, in Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, EDA Consortium, 2015, pp. 1683–1688.

[4] G. D. Micheli. (2016). UltrasoundToGo, [Online]. Available: http : / / www . nano - tera . ch /

projects/359.php.

[5] P. Tortoli, L. Bassi, E. Boni, A. Dallai, Fr. Guidi, and S. Ricci, “ULA-OP: An advanced open
platform for ultrasound research”, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Trans-
actions on, vol. 56, pp. 2207–2216, 2009.

[6] B. D. V. Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering”, IEEE
ASSP Magazine, vol. 5, pp. 4–24, 1988.

[7] M. Tanter and M. Fink, “Ultrafast imaging in biomedical ultrasound”, Ultrasonics, Ferroelectrics,
and Frequency Control, IEEE Transactions on, vol. 61, pp. 102–119, 2014.

[8] J. Bercoff, Ultrafast Ultrasound Imaging. INTECH Open Access Publisher, 2011.

[9] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent plane-wave compounding
for very high frame rate ultrasonography and transient elastography”, Ultrasonics, Ferroelectrics,
and Frequency Control, IEEE Transactions on, vol. 56, pp. 489–506, 2009.

[10] J. Kirkhorn, “Introduction to IQ-demodulation of RF-data”, 1999.

[11] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for
rapid MR imaging”, Magnetic resonance in medicine, vol. 58, pp. 1182–1195, 2007.

[12] Chr. G. Graff and E. Y. Sidky, “Compressive sensing in medical imaging”, Applied optics, vol. 54,
pp. C23–C44, 2015.

[13] G. David, J.-l. Robert, B. Zhang, and A. F. Laine, “Time domain compressive beam forming of
ultrasound signals”, The Journal of the Acoustical Society of America, vol. 137, pp. 2773–2784,
2015.

[14] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling”, IEEE Signal Processing
Magazine, vol. 25, pp. 21–30, 2008.

[15] R. G. Baraniuk, “Compressive sensing”, 2007.

[16] Z. Han, H. Li, and W. Yin, Compressive sensing for wireless networks. Cambridge University Press,
2013.

[17] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, 3rd. Academic
Press, 2008.

25

http://lsi.epfl.ch/page-93642-en.html
http://lsi.epfl.ch/page-93642-en.html
http://www.nano-tera.ch/projects/359.php
http://www.nano-tera.ch/projects/359.php


BIBLIOGRAPHY

[18] J.-L. Starck, J. Fadili, and F. Murtagh, “The undecimated wavelet decomposition and its recon-
struction”, Image Processing, IEEE Transactions on, vol. 16, pp. 297–309, 2007.

[19] R. E. Carrillo, A. Besson, M. Zhang, D. Friboulet, Y. Wiaux, J. P. Thiran, et al., “A sparse
regularization approach for ultrafast ultrasound imaging”, in Ultrasonics Symposium (IUS), 2015
IEEE International, 2015, pp. 1–4.

[20] ULA-OP Manual, Ver. 1.9, Microelectronics Systems Design Laboratory, 2015.

[21] (2013). General purpose ultrasound phantom, [Online]. Available: http://www.cirsinc.com/

file/Products/054GS/054GS%20DS%20022415.pdf.

[22] B. D. Steinberg, “Principles of aperture and array system design: Including random and adaptive
arrays”, New York, Wiley-Interscience, 1976. 374 p., vol. 1, 1976.

[23] Y. Yankelevsky, Z. Friedman, and A. Feuer, “Component Based Modeling of Ultrasound Signals”,
pp. 1–14, 2016.

[24] T. Szasz, A. Basarab, and D. Kouamé, “Strong reflector-based beamforming in ultrasound medical
imaging”, Ultrasonics, vol. 66, pp. 111–124, 2016.

[25] (2016). Plane-wave Imaging Challenge in Medical UltraSound, [Online]. Available: https://www.

creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016/.

26

http://www.cirsinc.com/file/Products/054GS/054GS%20DS%20022415.pdf
http://www.cirsinc.com/file/Products/054GS/054GS%20DS%20022415.pdf
https://www.creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016/
https://www.creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016/

	Contents
	List of Figures
	1 Introduction
	2 Theoretical Background
	2.1 Ultrasound Imaging
	2.1.1 Conventional Imaging Method
	2.1.2 Plane Wave Imaging

	2.2 Compressive Sensing
	2.2.1 Compressive Sensing Basics
	2.2.2 Problem Formulation for Ultrasound Imaging
	2.2.3 Requirements for Ultrasound Imaging

	2.3 Full Process for Conventional and Compressive Sensing Based Plane Wave Imaging

	3 Demonstrator
	3.1 Complete Setup
	3.2 Background on the ULA-OP System
	3.2.1 Hardware
	3.2.2 Software

	3.3 Custom Software for the Demonstrator
	3.3.1 Graphical User Interface
	3.3.2 Full Capabilities in MATLAB
	3.3.3 Main ULA-OP Configuration Issues and Solutions


	4 Results and Analysis
	4.1 Uniform vs. Random Sampling
	4.2 Coherent Plane Wave Compounding
	4.3 Varying Number of Transducers
	4.4 Choosing a Proper Representation Basis
	4.5 Imaging Large Ranges

	5 Conclusion
	Bibliography

