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1 Introduction

Artificial intelligence is certainly a rising trend as computers have, in recent years, achieved near human
performance when it comes to everyday tasks such as speech and image recognition. The release of
the ImageNet database has thrust forward the area of image classification by providing a benchmark
to compare the state-of-the-art classifiers [1]. Since 2010, the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) pits the best classifiers against each other. In 2012, the winning classifier with
a top-five accuracy of 84.7 percent was by Krizhevsky, Sutskever, and Hinton [2]. They used a deep
convolutional neural network (CNN), which has gone on to be used in many of the later submissions. The
2013 winner was Clarifai - now a company that has made their classifier into an API (Application Program
Interface) product - achieving an accuracy of 88.7 percent [3][4]. The 2014 winner was Google’s Inception
(aka GooLeNet) classifier trumping the past winners with a top five accuracy of 93.33 percent [5]. It
seems as though computers are already as good as humans when it comes to image recognition and
object classification. Moreover, several of the labels in the ImageNet database would even be difficult
for humans to discern, such as the difference between dog breeds.

However, there is more to the problem than meets the eye. Recent studies have shown that it is
possible to obtain an adversarial perturbation, i.e. a noise tuned to a particular image and classifier, so
that the perturbed, or modified image, is imperceptible from the original image yet the classifier yields
a (sometimes completely) different label [6]. These studies raise concerns on the robustness of such
classifiers. Can they be trusted if an imperceptible noise can completely throw off its results?

The goal of this semester project was to port the already implemented DeepFool algorithm [7] from
Matlab to Python and to develop an implementation of a blackbox approach, i.e. a situation in which
we do not have full access to the classifier structure As well as applying this blackbox approach to
“academic” networks, such as those submitted for the ILSVRC competition, we will also apply it to a
commercial classifier - Clarifai - to gauge the robustness of products in the area of image classification and
object recognition. An implementation of DeepFool for Google’s Cloud Vision, IBM’s Visual Recognition,
Amazon Rekognition, and Microsoft’s Computer Vision APIs is also made available but not extensively
tested.

This report is divided as such: Chapter 2 will present the algorithmic details with regards to DeepFool
and the blackbox approach; Chapter 3 will explain the implementation details; Chapter 4 presents results
and observations from this project; finally, Chapter 5 summarizes the work from this semester project
and discusses future work.
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2 Theory

The full algorithmic details and mathematical explanation can be found in a paper by Moosavi-Dezfooli et
al [6]. In this section, we will briefly describe the relevant theory, namely the variants of DeepFool
depending on given information (glassbox vs. blackbox) and the desired goal (changing the top label,
reducing the score of a label to a particular score, or reducing the score of multiple labels). By glassbox,
we refer to a scenario in which we have the full structure of the classifier and its output labels while
blackbox refers to a situation in which we only have access to the scores of a few output labels, as for an
API like Clarifai [4], Google’s Cloud Vision [8], IBM’s Visual Recognition [9], Amazon Rekognition [10],
and Microsoft’s Computer Vision [11].

Despite these slight differences, the general concept of DeepFool remains the same - compute an
adversarial perturbation for a given classifier and image by greedily moving towards the boundaries of
those labels different from the undesired one(s). For a given classifier, an adversarial perturbation is the
minimum perturbation r so that the estimated label k̂(x) for an image x is changed [6]:

r := min ‖r‖2 s.t. k̂(x + r) 6= k̂(x). (2.1)

2.1 DeepFool approaches

Below is a summary of the different variants of DeepFool implemented and tested in this project.

Short name Task Glassbox Blackbox
Algorithm 1 Multi-class Change top label
Algorithm 2 Binary Reduce score of a particular label
Algorithm 3 Multi-label Remove label(s) from top predictions

Table 2.1 Summary of DeepFool algorithm variants.

With this mind, we will now present the algorithmic steps for each algorithm variant of DeepFool. The
full proofs can be found in [6].

2.1.1 Multi-class

The steps of Algorithm 1 are taken from Algorithm 2 (DeepFool: multi-class case) of [6]. In line 4,
the subscript of ∇f denotes the column of the Jacobian matrix. This approach can only be used in
the glassbox scenario as it requires full knowledge of the labels and their corresponding scores. In the
blackbox scenario, only the top N labels are returned, which may be problematic when computing the
Jacobian, as is explained in Section 3.3.3.

6



2 THEORY

input : vectorized image x, classifier f .
output: perturbation r̂, perturbed image xp

1 initialize r̂← 0, xp ← x ;
2 while k̂(xp) = k̂(x) do
3 for k 6= k̂(x) do
4 w′

k ← ∇fk(xp)−∇fk̂(x)(xp);
5 f ′

k ← fk(xp)− fk̂(x)(xp);
6 end

7 ĵ ← arg mink 6=k̂(x)
|f ′

k|
‖w′

k‖2
;

8 r←
|f ′

ĵ
|

‖w′
ĵ
‖2

2
w′

ĵ
;

9 xp ← xp + r;
10 r̂← r̂ + r;
11 end

return : r̂, xp

Algorithm 1: Multi-class DeepFool for changing the top label.

2.1.2 Binary

The algorithmic steps for applying DeepFool to reduce the score of a particular label can be found below.
These are essentially the same steps as from Algorithm 1 (DeepFool for binary classifiers) of [6]. The
main difference between this version of DeepFool and that of Algorithm 1 lies in the fact that we are
treating the ith output of a multi-class classifier as a binary classifier whose score we want to reduce
below a certain threshold τ .

This algorithm can be used in the glassbox case when we would like to reduce the score of a par-
ticular label, which may not necessarily be the top label. This approach is particularly useful for the
blackbox case as we may not have access to all the output labels and simply removing the targeted label
by reducing the score until it is no longer in the top N predictions may be the best we can do in terms
of “fooling” the classifier.

input : vectorized image x, classifier f , label output index i, threshold τ .
output: perturbation r̂, perturbed image xp

1 initialize r̂← 0, xp ← x ;
2 while fi(xp) > τ do

3 r← fi(xp)
‖∇fi(xp)‖2

2
∇fi(xp);

4 xp ← xp + r;
5 r̂← r̂ + r;
6 end

return : r̂, xp

Algorithm 2: Binary DeepFool for reducing the score of a particular label.

7



2 THEORY

2.1.3 Multi-label

Another use case that may be of interest in the blackbox scenario is to remove multiple labels from the
top N predictions. For instance, blackbox commercial classifiers tend to give multiple labels that are
appropriate for a given image, such as “animal” and “panda” by Clarifai for the image in Figure 4.20
(see Table 4.8 for the full results). Moreover, we may be interested in removing multiple labels. The
algorithmic steps for removing multiple labels from a classifier output can be found below where the
classifier f returns a vector - F - of the N top labels.

input : vectorized image x, classifier f , labels to remove L.
output: perturbation r̂, perturbed image xp

1 initialize r̂← 0, xp ← x ;
2 while L ∩ f(xp) 6= ∅ do
3 r← 0;
4 for l ∈ L ∩ f(xp) do

5 r← r + fl(xp)
‖∇fl(xp)‖2

2
∇fl(xp)

6 end
7 xp ← xp + r;
8 r̂← r̂ + r;
9 end

return : r̂, xp

Algorithm 3: Multi-class DeepFool for removing multiple labels in blackbox scenario.

This algorithm could also be used in the glassbox scenario to reduce the score of multiple label or to
remove multiple labels from the top N predictions.

2.2 Gradient computation

As we do not have full access to the classifier’s structure in the blackbox scenario, computing the gradient
- as in done in line 4 of Algorithm 1, line 3 of Algorithm 2, and line 5 of Algorithm 3 - will have to be
done numerically.

Finite different methods can be used to compute the gradients numerically. A common approximation
for the derivative of a function f at point x is:

f ′(x) ≈ f(x+ δ)− f(x)
δ

. (2.2)

However, the symmetric difference quotient below is generally a more accurate approximation than the
above “one-sided” difference quotient:

f ′(x) ≈ f(x+ δ)− f(x− δ)
2δ . (2.3)

This is due to the fact that the first-order errors cancel with the symmetric difference quotient approxima-
tion. In fact, TensorFlow’s function for computing the numerical gradient - tf.test.compute_gradient
(which returns the symbolic gradient as well [12]) - uses the symmetric difference quotient approximation.
This can be verified by running the script test_numerical_gradient.py in mnist_softmax.

Higher-order difference quotients could be uses to reduce higher-order error terms; however, this
quickly becomes impractical in our case as this would require more sample points. More sample points
entails more queries from our classifier, but commercial classifiers have a rate limit that restricts the

8



2 THEORY

number of times one may query the classifier. Therefore, we opt for the symmetric difference quotient
in order to curb the (literal) cost of applying DeepFool to a particular image.

With our symmetric difference quotient in hand, we can go about computing the Jacobian matrix
(as we have a vector input and a function that yields a vector output) of the first-order derivatives.
The standard basis is used for computing the numerical Jacobian matrix. The standard basis for the
vector space RN is given by the vectors ei for i = 1, ..., N where ei is equal to one at position i and zero
elsewhere. The ith row of the Jacobian matrix is then computed as such:

∇fi(x) ≈ f(x + δ · ei)− f(x− δ · ei)
2δ . (2.4)

For an image of size (I, J,K) and C output labels, the Jacobian will be of size (N,C), where N = I ·J ·K.
Therefore, when using the symmetric difference quotient, we require 2N queries as each row of the
Jacobian matrix requires two queries.

2.2.1 Choice of δ

The choice of δ has an influence on the error; for the symmetric difference quotient, the error is ap-
proximately proportional to δ2. Using Google’s Inception v3 network, we computed the deviation from
the symbolic (ground truth) gradient values. Figure 2.1 is a result of running the following script (in
imagenet_inception):

» python plot_numerical_gradient_error.py

Figure 2.1 Delta versus MSE error between symbolic and numerical gradient of Inception v3.

2.2.2 Random subspace approach

As mentioned earlier, commercial classifiers have a rate limit, restricting the number of queries that can
be performed. If we consider a rather small RGB image with dimensions (224, 224, 3) (a typical input
size for ImageNet classifiers), we would require 2 ·244 ·244 ·3 = 301056 entries per iteration of DeepFool.
Even if we did not have a constraint on the number of allowed queries, this would take a very long time
to compute. Table 2.2 summarizes the rate limit constraints of different APIs.

Fortunately, there is a way to reduce this computational and monetary cost in running DeepFool.
Instead of using the standard basis of dimension N , we can estimate the numerical Jacobian with a

9



2 THEORY

# free queries Additional
queries Notes

Clarifai 5000 per month $1.20 per 1000
Google’s
Cloud Vision 1000 per month $1.50 per 1000 Need to open billing account

even for free use.
IBM’s Visual
Recognition 250 per day $0.002 per

Image
Does not support BMP and
TIFF.

Amazon
Rekognition

5000 per month
for first 12
months

$1.00 per 1000
Need to open billing account
even for free use. Does not
support BMP and TIFF.

Microsoft’s
Computer
Vision

5000 per month,
20 per minute $1.50 per 1000

CloudSight 500 for one-time
free trial

$49 for 800;
$149 for 3000;
$399 for 10000;
$1499 for 50000

Takes 6-12 seconds to receive
a completed response. Does
not give labels with a
corresponding score but
rather a textual description.

Table 2.2 Comparison of Image Recognition API’s. An interesting comparison can be found at this blog post [13].

random subspace of dimension D << N . However, this comes at the cost of increasing the perturbation
norm by a factor of

√
N/D [14].

The random subspace - PS - is computed from a random matrix of size (N,D) with the entries drawn
from normal distribution of mean 0 and variance 1. It is then made into an orthonormal basis, e.g. by
means of the Gram-Schmidt process. The Jacobian matrix in this reduced subspace will now be of size
(D,C) and each row will be computed as such:

∇fS,i(x) ≈ f(x + δ · si)− f(x− δ · si)
2δ . (2.5)

The approximated full numerical Jacobian J can then be computed from the Jacobian matrix in the
random subspace JS with a simple projection:

J = PS × JS (2.6)

Our objective from Equation 2.1 is subsequently modified to the following expression as our perturbation
will be computed from the vectors spanned by the random subspace S:

rS := min
r∈S
‖r‖2 s.t. k̂(x + r) 6= k̂(x) (2.7)
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3 Implementation

Python was chosen as the development language for the following reasons:

1. Easy to use for prototyping and allows for “readable” code;
2. Widely used in the open source and developer community, which allows us to make use of state-

of-the-art libraries such as Numpy [15], TensorFlow [16], Theano [17], and Keras [18];
3. Image Classification APIs are available in Python.

In this section, we will describe the overall structure of the code, which should also give insight into how
it can be extended for applying DeepFool to other classifiers.

3.1 General structure

At the center of everything is the file deepfool.py which contains an abstract class entitled DeepFool.
There are two methods for applying DeepFool in the glassbox and blackbox scenarios: _apply_glassbox
and _apply_blackbox respectively. Running _apply_glassbox will guide the user through an interface
which prints (at most) 30 labels with the highest prediction scores. The user will be prompted to select
one of two tasks:

1. Change the top label;
2. Reduce the score of a particular label.

Selecting ‘Change the top label’ will apply the Algorithm 1 variant of DeepFool. Choosing ‘Reduce the
score of a particular label’ will prompt the user to select a label to reduce and a corresponding threshold.
Consequently, the Algorithm 2 variant of DeepFool will be applied.

Running _apply_blackbox will similarly guide the user through an interface which prints (at most)
30 labels with the highest prediction scores. The user will be prompted to select one of two tasks:

1. Reduce the score of a particular label;
2. Remove label(s) from the top predictions.

Reducing the score of a particular label will prompt the user to select a label to reduce and a threshold.
The Algorithm 2 variant of DeepFool will then be applied. Removing label(s) from the top predictions
will prompt the user to select the desired label(s) to remove. Consequently the Algorithm 3 variant of
DeepFool will be applied.

The following methods for debugging have also been implemented:

• compare_with_original: compare the (at most) 30 top predictions labels of a given image (default
is the perturbed image) with those of the original image.

• compare_with_random_noise: compute multiple (default 10) perturbed images by adding random
noise that has the same norm as that of the adversarial noise; then compute the predictions of these
“randomly” perturbed images to ensure that the score reduction / label(s) removal performed by

11



3 IMPLEMENTATION

the adversarial perturbation cannot be done by just any randomly generated noise.

The rest of the methods in deepfool.py serve for the implementation of the command line user interface
(i.e. printing prompts and results nicely for the user) and the variants of DeepFool (e.g. computing the
Jacobian and updating variables for each iteration).

For each classifier, a child to DeepFool has been created. The unique aspects of each classifier’s
implementation will be described in the following sections. Key differences include the structure of the
input to the classifier, the structure of the classifier’s output, how the classifier’s predictions are obtained,
and how to parse the results. As each classifier returns scores within [0, 1] (i.e. the output of a softmax
layer for the academic networks or confidence scores for the APIs), we apply a natural log to the output
in order to approximately invert this output layer as the DeepFool algorithm does not perform well on
such outputs.

Each classifier’s DeepFool implementation requires a method called calculate_predictions, which
returns the prediction results in the form of a dictionary, with the label being the key and the score
being the value. This is the only method required by the functions in deepfool.py in order to apply
the appropriate DeepFool variant. Moreover, calculate_predictions must have four inputs:

1. input_image: vectorized image whose predictions will be calculated; if it needs to be reshaped or
saved as an image file in order to query the classifier, this should be done within
calculate_predictions.

2. num_pred: number of labels to be returned by the classifier; this is more useful for the academic
networks if one wishes to just know the top N labels; does not need to be used by
calculate_predictions.

3. print_results: Boolean variable which can be used to call the DeepFool method
_print_prediction_results in order to print the results nicely for the user.

4. image_friendly: Boolean which can be used to notify calculate_predictions whether or not
the image values should be quantized into 256 values before calculating the predictions; this is not
needed for the APIs as the image values have to be anyway saved as an image to query the classifier
which will ultimately lead to quantization; in the glassbox network, however, it helps avoid this
quantization; more on this in Section 3.3.1.

We have also implemented additional functions for convenient use and debugging such as:

• set_input_image: give an image path to set the input image; this removes the need of having to
create a separate DeepFool object for each image which can be memory intensive due to the size
of the classifiers (when using the academic networks).

• visualize_image: plot the image using the matplotlib.pyplot.imshow function; needs to be
done differently for each image due to the differences in the value ranges and dimension ordering
(as the values passed to matplotlib.pyplot.imshow must be of type float, within the range
[0, 1], and have the RGB channels as the third dimension).

• save_image: save a given image (default perturbed image) to disk with the scipy.misc.imsave

function; needs to be done differently for each image due to the differences in the value ranges and
dimension ordering (as the values passed to scipy.misc.imsave must be of type uint8, within
the range [0, 255], and have the RGB channels as the third dimension).

12



3 IMPLEMENTATION

3.2 Targeted classifiers

3.2.1 MNIST fully connected single layer

In mnist_single_layer, there is (as the name suggests) an MNIST neural network classifier with a
single layer, with a softmax at the output. It was implemented in TensorFlow, by following one of the
tutorials [19]. Working with this small network was useful when testing the very first implementations of
DeepFool and ensuring that the gradient values were computed correctly, as the symbolic gradients can
be computed quickly. In order to apply DeepFool to this classifier, one simply needs to run the script
fool_mnist_single_layer.py. First DeepFool with the symbolic Jacobian matrix will be applied, then
the numerical Jacobian, and finally the subspace method with D = 200. A different image can be used
by setting the command line argument -i to a value within [0, 9999].

3.2.2 Keras (ResNet50, VGG16, VGG19)

The keras library allows us to conveniently query three classifiers - ResNet50, VGG16, and VGG19 -
trained on the ImageNet database of 1000 output labels [18][20]. We decided to use Theano as a backend
when running Keras.

The pixel values must be within the range of [0, 255], and the input dimensions for querying the
classifiers are of the shape: (N, 3, 224, 224), where N is the number of images. Multiple images can
be sent to a classifier (so that predictions can be computed in parallel). We will, however, just be
computing the predictions for one image at a time. This feature could be taken advantage of to speed
up the computation of the Jacobian matrix.

With the pre-trained models by Keras [20], it is possible to emulate the blackbox scenario by setting
the number of predictions parameters - num_pred - in the constructors to a value below 1000. At the
moment, the Jacobian for the Keras model can only be computed numerically (full or subspace method)
so the only difference between the glassbox and blackbox scenarios lies in the knowledge of the full output
label set and image_friendly always being set to True for the blackbox scenario.

To apply DeepFool on one of the Keras models, one simply needs to go to the imagenet_keras

directory and run the following script:

» python fool_imagenet_keras.py -f <image_path>

where <image_path> is the path to the desired file, preferably in an uncompressed format such as BMP
to avoid artifacts from lossy compression. The user will then be prompted which classifier they would
like to fool and in what manner.

By default for each classifier (and for the results in Section 4.1), the subspace dimension is set to
D = 100, the overshoot parameter (described in Section 3.3.4) is set to 1, and the symmetric difference
quotient parameter is set to δ = 0.01. It is possibly to set these values and other parameters as command
line arguments with the above script:

1. Image file path: -f or --image_path=,
2. Model: -m or --model=; possible choices are resnet50, vgg16, and vgg19,
3. Subspace dimension D: -s or --sub_dim=,
4. Delta δ: -d or --delta=,
5. Overshoot: -o or --overshoot=,
6. Maximum number of iterations: -i or --max_iter=,
7. Number of predictions returned by the classifier: -p or --num_pred=; this can be used to “simulate”
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the blackbox case where we do not have the full set of output labels.

3.2.3 Google’s Inception v3

Instead of using the Inception network via Keras, we used the trained network directly provided through
TensorFlow’s documentation [5]. This was mainly done as the gradients can be more conveniently
accessed and computed by working with Inception v3 directly with TensorFlow.

Using the network “out of the box” was not necessarily straightforward as the example in the given
classify_image.py file only shows how to provide an input that is a path to a JPG file. Moreover,
saving to JPG in order to query the classifier would hamper the DeepFool process as JPG is a lossy
compression, thus introducing artifacts. Therefore, we need go past this operation in the TensorFlow
graph of the Inception model and find the actual entry point into the classifier. Unfortunately, there
is not much documentation on each Tensor and Operation in the Inception graph. However, with the
IPython shell we can investigate this on our own by first loading the model with the create_graph

function inside classify_image.py:

» sess = tf.InteractiveSession()

» create_graph()

and by running:

» [n.name for n in tf.get_default_graph().as_graph_def().node]

The last command prints all the Tensors in the Graph to the Terminal output. After some trial and
error and checking the shapes of the Tensors, we concluded that the input to the neural network is at
the Tensor Mul:0. It has the shape (1, 299, 299, 3), and the input pixel values must be within the range
[−1, 1].

The output of the classifier can be taken at the Tensor softmax:0 which then needs to be (approxi-
mately) inverted with the natural log by adding a TensorFlow operation as such:

» output_tensor = sess.graph.get_tensor_by_name(‘softmax:0’)

» classifier = tf.log(output_tensor)

One could also obtain the output before the softmax layer with the following commands:

» weights = sess.graph.get_tensor_by_name(‘softmax/weights:0’)

» biases = sess.graph.get_tensor_by_name(‘softmax/biases:0’)

» x = sess.graph.get_tensor_by_name(‘pool_3/_reshape:0’)

» classifier = tf.matmul(x,weights) + biases

To obtain the predictions of an image, it must first be resized to the shape (1, 299, 299, 3) and fed to the
classifier Tensor as such (where image_data is the reshaped data within the range [−1, 1]):

» pred = classifier.eval(feed_dict={‘Mul:0’:image_data})

To ensure that the Inception v3 model is properly downloaded to one’s computer, the script label.py
in imagenet_inception can be run:
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» python label.py <jpg_file_path>

After downloading the Inception v3 model and placing it in imagenet_inception, DeepFool can be
applied to an image by running the following script:

» python fool_imagenet_inception.py -f <image_path>

where <image_path> is the path to the desired file.
By default (and for the results in Section 4.2), the subspace dimension is set toD = 100, the overshoot

parameter to 0.005, and the symmetric difference quotient parameter is set to δ = 0.01. It is possible to
set these values and other parameters as command line arguments with the above command:

1. Image file path: -f or --image_path=,
2. Subspace dimension D: -s or --sub_dim=,
3. Delta δ: -d or --delta=,
4. Overshoot: -o or --overshoot=,
5. Maximum number of iterations: -i or --max_iter=,
6. Number of predictions returned by the classifier: -p or --num_pred=; this can be used to “simulate”

the blackbox case where we do not have the full set of output labels.

3.2.4 APIs (Clarifai, Google, IBM, Amazon, Microsoft)

As all the APIs represent a blackbox scenario, we do not know how the input is processed and fed to the
classifier. Therefore, as an input shape we simply use that of our image we are applying DeepFool to.
For this reason, it may be desired to crop the targeted object to fool and perhaps subsample the image
to reduce the number of input dimensions.

Each time that we would like to query the classifier, e.g. when computing the Jacobian matrix,
we must save the perturbed image as a valid uncompressed image format, e.g. BMP, TIFF, or PNG.
Moreover, the application of DeepFool to each API’s classifier only differs in three aspects:

1. Authentication: sending requests to an API typically requires some sort of authentication with an
“API Key”.

2. The functions / methods used for querying the classifier.
3. Parsing the response returned by the API.

As these are the only differences, we have created an api class (which is a child of DeepFool) from which
each API’s DeepFool implementation inherits from. Below is the name of the file and class for each API’s
DeepFool implementation (all in the folder deepfool).

• Clarifai: clarifai_api
• Google: cloud_vision
• IBM: visual_recognition
• Amazon: amazon_rekognition
• Microsoft: microsoft_cv

Upon inspection of the each class’ implementation, one may observe that there are only two functions:
the constructor for setting up the authentication and _query_api for querying the API, parsing the
response, and applying log to “invert” the softmax. In reality, the outputs of these APIs are not really
from a softmax layer as the scores do not sum to one, but the natural log helps to emphasize the difference
between the scores to aid DeepFool.
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In each API’s folder (same name as the classes above), there is a README.md file that explains how to
set up the authentication. Moreover, there is a label.py file to obtain the API’s response on a desired
file as such:

» python label.py <image_path>

We only gathered results from the Clarifai API as they were the most generous in offering free queries.
In fact, they did not charge from the free query limit until December as they were operating under a
‘developer preview’ mode. Nevertheless, the other APIs are also ready for applying DeepFool.

By default (and for the results in Section 4.3), we use a higher δ(= 0.5) for the symmetric difference
quotient to ensure that the deviated image in the difference quotient results in a change when the pixels
are quantized (into 256 values) and saved as an image. When using δ = 0.01 as for the previous classifiers,
the numerical gradient was always zero because this value of δ was not high enough to yield a different
image. The default subspace dimension is set to D = 25 as to not use too many credits (as a reminder
the Clarifai API allows 5000 free queries and each iteration of DeepFool requires 2D + 1 queries).

To apply DeepFool on the Clarifai API (or another API), one simply needs to go to the corresponding
directory and run:

» %run fool_<api_name>.py -f <image_path>

where <image_path> is the path to the desired file. Please refer to Table 2.2 to see which file formats
are accepted by each API. It is possibly to set the following parameters as command line arguments with
the above command:

1. Image file path: -f or --image_path=,
2. Subspace dimension D: -s or --sub_dim=,
3. Delta δ: -d or --delta=,
4. Overshoot: -o or --overshoot=,
5. Maximum number of iterations: -i or --max_iter=

3.3 Key considerations and observations

3.3.1 Input format

Different classifiers require different formats for their inputs: image shape of (1, 3, 224, 224) with values
within [0, 255] for the Keras models; image shape of (1, 299, 299, 3) with values within [−1, 1] for the
Inception v3 model; and an image file (of a particular format) for the APIs. However, for DeepFool we
require a vectorized version of the image.

To accommodate such differences, we implemented a method for each classifier called _prepare_input

that reshapes the vectorized image and for the APIs saves it as a file. Moreover, for the methods
mentioned earlier (set_input_image, visualize_image, and save_image), we had to accommodate
such differences by implementing those functions in the child class rather than the parent class.

3.3.2 “Image friendly” values

Ultimately, each pixel value will be represented by 8 bits, which means it can take on 28 = 256 different
values, namely all integers within the range [0, 255]. However, DeepFool works with float values. There-
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fore, when querying a classifier for the prediction results of a realistic image, it is necessary that the pixel
values only take on integer values between [0, 255].

This is no concern for the APIs as saving the image to a valid image format will already ensure this.
However, when working with the classifier directly, as with the Keras models and Inception v3, they will
accept any float value as input. When computing the Jacobian to find the adversarial perturbation, such
values could be used to get better adversarial perturbation (although not in-line with what would be
allowed in the blackbox case). However, when computing the prediction scores of the perturbed image
(such as at the end of a DeepFool iteration), it is important to have “image friendly” values to reflect
what the scores would be for an actual image.

To accommodate for this, we have added a parameter named image_friendly to the _prepare_input
methods of the Keras and Inception models. For Keras, this implies rounding the values as they are
already within the range of [0, 255] and casting them as uint8. For the Inception model, this means
shifting the image values from the range [−1, 1] to [0, 255] and then casting them as uint8.

3.3.3 Dealing with “disappearing” labels

When working in the blackbox scenario, we only have access to a certain number of labels, e.g. 20 for
the Clarifai API. Some of these labels, however, may come and go when we add perturbations, e.g. when
computing the numerical Jacobian matrix.

We deal with these “disappearing” labels in a very simple manner. Suppose our blackbox classifier
outputs only the top C labels; then we will attempt to construct a Jacobian matrix of size (D,C) where
D is either the length of the vectorized image or the subspace dimension. We set the C classes as
those labels acquired when querying the classifier before the computation of the Jacobian. If during
the Jacobian computation, a particular label is not among the top C labels anymore when querying the
classifier to compute the symmetric difference quotient, then we simply set the value to the minimum
score of the C output labels. As the label has been removed it cannot be larger than this minimum
value. As there is no other knowledge we have about the new score of this particular label, this choice
serves as an appropriate estimate.

If our goal is to remove a particular label (or labels) and we happen to accomplish this during the
Jacobian computation with a particular subspace vector, we may wish to prematurely terminate the
DeepFool process. If this is the case, we can set quit_early = True when running apply.

3.3.4 Improving convergence

overshoot parameter

In order to reduce the number of iterations so that either the top label changes or the score of a
particular label reduces under a certain threshold, we can use an overshoot factor (a parameter for the
apply method). This factor will multiply the perturbation computed at the current iteration (line 8 of
Algorithm 1, line 3 of Algorithm 2, before line 7 of Algorithm 3) by (1 + overshoot). At the moment,
this overshoot parameter is chosen by trial and error. Ideally, it should be very small because the larger
it is, the larger the perturbation norm will be, causing the added perturbation to be (possibly) more
noticeable.

It is best to start with a small overshoot (e.g. 1 for the Keras models since the range of values is
within [0, 255] and 0.005 for Inception since the range of values is within [−1, 1]) . If the score is not
reducing at the desired rate, one can stop the process and continue the DeepFool process with a larger
overshoot factor by setting the cont parameter to True, e.g. as such (where df is a DeepFool object):
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» df.apply(overshoot=0.1, cont=True)

For future improvements to the implementation, it would be ideal to have a method for determining the
appropriate overshoot value.

Changing subspace vectors

Another observed “trick” that could help when the reduction of the score starts to slow down is to change
the random subspace vectors. This can be done with the set_subspace _dimension method, e.g. as
such (where df is a DeepFool object):

» df.set_subspace_dimension(sub_dim=100)

Interrupting a DeepFool process to change the subspace vectors has not been done with the results in
the following section.
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A small test set was created by downloading several images from the web by doing a Google Images
search of some of the labels in the ImageNet database. These images can be found in the folder pics.
These images can be converted to a desired format with the convert_images.py script by running the
following command in the Terminal:

» python convert_images.py -e <EXTENSION>

The converted files are then stored in the folder pics_<EXTENSION>.
The IPython Shell was used for testing and obtaining the results the below. It is possible to also use

the regular Python shell by replacing %run with python. Either shell makes the testing and debugging
convenient as variables are stored in the workspace. All the images below are displayed in their original
size.

4.1 Keras

DeepFool was applied for each Keras model on 3-4 images. In the following subsections, we will show
the results for these images and comment on how the labels were changed due to the perturbation. The
full results can be found in report_results/imagenet_keras. One important point is that DeepFool
is applied to a resized version of the original image from pics_bmp as the input the classifiers must have
a shape of (3, 224, 224). These resized images are stored in report_results/imagenet_keras with a
prefix of ORIG_.

4.1.1 ResNet50

Multiclass DeepFool (Algorithm 1) was applied to the following images (in pics_bmp) and ResNet50.

Image mushroom.bmp polar-bear-cropped.bmp soccer-ball.bmp

Original top label plate ice_bear soccer_ball
Original score 0.33189 0.87409 0.70333
Perturbed score 0.26001 0.26068 0.35640

Perturbed top label cauliflower miniature_poodle football_helmet
Original score 0.17047 0.02112 0.10522
Perturbed score 0.26234 0.26114 0.35669

Image norm 64768 69388 40158
Perturbation norm 758 1546 1464

Table 4.1 ResNet50 results for subspace dimension D = 100 and overshoot = 1.
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For each of the images in Table 4.1, DeepFool was able to modify the original top label. We can
observe from the corresponding images below that the added noise is practically imperceptible. Moreover,
adding random noise of the same norm as that of the adversarial perturbation (by running the method
compare_with_random_noise) was not able to change the top label.

The full results can be found in report_results/imagenet_keras/resnet50/<Image>_results.

(a) Original, top label of ‘plate’ (b) Perturbed, top label of ‘cauliflower’

Figure 4.1 Multiclass DeepFool applied to ResNet50 and pics_bmp/mushroom.bmp

(a) Original, top label of ‘ice_bear’ (b) Perturbed, top label of ‘miniature_poodle’

Figure 4.2 Multiclass DeepFool applied to ResNet50 and pics_bmp/polar-bear-cropped.bmp

(a) Original, top label of ‘soccer_ball’ (b) Perturbed, top label of ‘football_helmet’

Figure 4.3 Multiclass DeepFool applied to ResNet50 and pics_bmp/soccer-ball.bmp

20



4 RESULTS

4.1.2 VGG16

Multiclass DeepFool (Algorithm 1) was applied to the following images (in pics_bmp) and VGG16.

(a) Original, top label of ‘burrito’ (b) Perturbed, top label of ‘chambered_nautilus’

Figure 4.4 Multiclass DeepFool applied to VGG16 and pics_bmp/burrito_1.bmp

(a) Original, top label of ‘desk’ (b) Perturbed, top label of ‘barbershop’

Figure 4.5 Multiclass DeepFool applied to VGG16 and pics_bmp/desk.bmp

(a) Original, top label of‘monitor’ (b) Perturbed, top label of ‘library’

Figure 4.6 Multiclass DeepFool applied to VGG16 and pics_bmp/television.bmp

For each of the images, DeepFool was able to modify the original top label. Just as for the ResNet50
perturbed images, we can observe that the added noise is practically imperceptible. Moreover, adding
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Image burrito_1.bmp desk.bmp television.bmp

Original top label burrito desk monitor
Original score 0.15171 0.33112 0.54012
Perturbed score 0.12003 0.18990 0.33939

Perturbed top label chambered_nautilus barbershop library
Original score 0.09869 0.09479 0.13350
Perturbed score 0.12823 0.20496 0.34182

Image norm 47001 49445 40158
Perturbation norm 334 1163 1464

Table 4.2 VGG16 results for subspace dimension D = 100 and overshoot = 1.

random noise of the same norm as that of the adversarial perturbation was not able to change the top
label. Table 4.2 summarizes the results for the above images. The full results can be found in
report_results/imagenet_keras/vgg16/<Image>_results.

4.1.3 VGG19

Multiclass DeepFool (Algorithm 1) was applied to the following images (in pics_bmp) and VGG19.

Image burrito_1.bmp mailbox.bmp mashed-potato.bmp minivan.bmp

Original top label burrito mailbox spaghetti_squash minivan
Original score 0.28946 0.26057 0.51727 0.38923
Perturbed score 0.12560 0.12700 0.38240 0.20874

Perturbed top label pomegranate swing toilet_seat racer
Original score 0.08046 0.03987 0.29055 0.09963
Perturbed score 0.12576 0.14071 0.40227 0.20942

Image norm 47001 49745 64443 40938
Perturbation norm 1276 1870 567 1677

Table 4.3 VGG19 results for subspace dimension D = 100 and overshoot = 1.

(a) Original, top label of ‘burrito’ (b) Perturbed, top label of ‘pomegranate’

Figure 4.7 Multiclass DeepFool applied to VGG19 and pics_bmp/burrito_1.bmp

For each image, DeepFool was able to modify the original top label. Although the original top label
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(a) Original, top label of ‘mailbox’ (b) Perturbed, top label of ‘swing’

Figure 4.8 Multiclass DeepFool applied to VGG19 and pics_bmp/mailbox.bmp

(a) Original, top label of‘spaguetti_squash’ (b) Perturbed, top label of ‘toilet_seat’

Figure 4.9 Multiclass DeepFool applied to VGG19 and pics_bmp/mashed-potato.bmp

(a) Original, top label of‘minivan’ (b) Perturbed, top label of ‘racer’

Figure 4.10 Multiclass DeepFool applied to VGG19 and pics_bmp/minivan.bmp

for mashed-potato.bmp is incorrect, the inside of a spaghetti squash does have a similar appearance
to mashed potato. Just as for the ResNet50 and VGG16 perturbed images, we can observe from the
corresponding images below that the added noise is practically imperceptible. Likewise, adding random
noise of the same norm as that of the adversarial perturbation was not able to change the top label.
Table 4.3 summarizes the results for the above images. The full results can be found in
report_results/imagenet_keras/vgg16/<Image>_results.
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4.2 Google’s Inception v3

Multiclass DeepFool was applied on 3 images and Binary DeepFool (for reducing a particular label’s
score) on 2 images. In the following subsections, we will show the results for these images and com-
ment on how the labels were changed due to the perturbation. The full results can be found in
report_results/imagenet_inception. One important point is that DeepFool is applied to a resized
version of the original image from pics_bmp as the input to the Inception classifier must have a shape
of (299, 299, 3). These resized images are stored in report_results/imagenet_inception with a prefix
of ORIG_.

4.2.1 Multiclass

Multiclass DeepFool (Algorithm 1) was applied to the following images (in pics_bmp) and the Inception
v3 classifier.

Image coffeepot.bmp forklift.bmp frying-pan.bmp

Original top label coffeepot forklift frying-pan
Original score 0.80178 0.80167 0.61649
Perturbed score 0.37249 0.20787 0.33429

Perturbed top label rotisserie golfcart, golf cart measuring cup
Original score 0.02097 0.01835 0.05454
Perturbed score 0.37568 0.20893 0.33756

Image norm 333.13254 290.88104 280.80172
Perturbation norm 14.81096 44.84579 7.39622

Table 4.4 Inception v3 Muliclass DeepFool results for subspace dimension D = 100 and overshoot = 0.005.

(a) Original, top label of ‘coffeepot’ (b) Perturbed, top label of ‘rotisserie’

Figure 4.11 Multiclass DeepFool applied to Inception v3 and pics_bmp/coffeepot.bmp
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(a) Original, top label of ‘forklift’ (b) Perturbed, top label of ‘golfcart’

Figure 4.12 Multiclass DeepFool applied to Inception v3 and pics_bmp/forklift.bmp

(a) Original, top label of‘frying pan’ (b) Perturbed, top label of ‘measuring cup’

Figure 4.13 Multiclass DeepFool applied to Inception v3 and pics_bmp/frying-pan.bmp

For each of the images, DeepFool was able to modify the original top label. We can observe from the
corresponding images that the added noise is quite small; for forklift.bmp the added noise starts to
be noticeable. Moreover, adding random noise of the same norm as that of the adversarial perturbation
was not able to change the top label. Table 4.4 summarizes the results for the above images. The full
results can be found in report_results/imagenet_inception/<Image>_results.

4.2.2 Binary

With the Inception v3 classifier, we also test the Binary DeepFool variant. As we will see later on with
the Clarifai classifier, sometimes the label humans might associate with an image may not be the top
label. Therefore, we may wish to reduce a label that is not the top one; in this case, we would need to
apply Algorithm 2. For the images below, the “true” label was not the top label. Nonetheless, we would
like to reduce the score of the true label to further worsen the classifier’s results.
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Image backpack.bmp cauliflower_1.bmp

Top label bulletproof vest coral fungus
Original score 0.46256 0.49046
Perturbed Score 0.94858 0.86562

Targeted label backpack cauliflower
Original score 0.1508 0.28117
Perturbed Score 0.00519 0.00107

Image norm 399.87729 324.13108
Perturbation norm 28.97545 43.90304

Table 4.5 Inception v3 Binary DeepFool results for subspace dimension D = 100 and overshoot = 0.005.

(a) Original, 0.1508 as ‘backpack’ (b) Perturbed, 0.00519 as ‘backpack’

Figure 4.14 Binary DeepFool applied to Inception v3 and pics_bmp/backpack.bmp

(a) Original, 0.28117 as ‘cauliflower’ (b) Perturbed, 0.00107 as ‘cauliflower’

Figure 4.15 Binary DeepFool applied to Inception v3 and pics_bmp/cauliflower_1.bmp
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4.3 Clarifai API

4.3.1 Single label removal

The Algorithm 2 DeepFool variant was applied on 4 images to reduce the scores of a particular label.
Compared with the previous classifiers, Clarifai tends to give more general terms as labels. For the
example, the results for the original image in Figure 4.16 can be seen in Table 4.6. Our goal will be to
remove a particular with Algorithm 2 by setting the threshold τ to very low value, such as 0.1, so that
the label is not anymore part of the top 20 labels.

Labels (1-10) Score Labels (11-20) Score
isolated 0.9945 corporate 0.9320
luggage 0.9921 one 0.9155
man 0.9727 casual 0.9132
case 0.9681 desktop 0.9131
briefcase 0.9672 executive 0.9116
business 0.9577 woman 0.9083
bag 0.9552 adult 0.90341
trip (journey) 0.9543 professional 0.9031
young 0.9484 fashion 0.8947
backpack 0.9325 elegant 0.8921

Table 4.6 Clarifai API results for backpack.bmp

Even some of the top 20 labels can be viewed as contradictory, e.g. ‘man’ vs. ‘woman’ and ‘busi-
ness’ vs. ‘casual’. The results for each of the four images are summarized in the table below.The
last row (Number of success tries with random noise out of 10) was obtained by running the method
compare_with_random_noise(). The full results and Terminal outputs can be found in
report_results/clarifai_api. The results can be reproduced as the subspace vectors used for each
of the perturbed images is also saved in the above folder as a Pickle file with the name <image_name>.p.
One can set the subspace vectors as a command line argument with -v in order to reproduce the results
as such:

» %run fool_clarifai_api.py -f <image_path> -v <subspace_vectors_pickle_path>

Image in pics_bmp backpack crane-building white-wolf-resize cucumber_1

Targeted label backpack crane wolf cucumber
Original score 0.9325 0.9479 0.9412 0.9810

Removed labels woman,
backpack

tallest, crane,
steel

tundra, wolf, dog,
canine, polar, ice cucumber

Added labels people, person technology,
vehicle, daylight

merino, looking, one,
rural, grass, sheep fruit

Image norm 207.72261 271.70857 316.54845 149.85682
Perturbation norm 4.80558 15.19885 23.46766 2.59481
Number of
successful tries
with random noise
out of 10

2 0 0 0

Table 4.7 Results for Clarifai API - Single Label Removal
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The added noise is slightly more perceptible, particularly for crane-building.bmp and
white-wolf-resize.bmp.

(a) Original, 0.9325 for ‘backpack’ (b) Perturbed with ‘backpack’ removed

Figure 4.16 Binary DeepFool applied to Clarifai API and pics_bmp/backpack.bmp

(a) Original, 0.9479 for ‘crane’ (b) Perturbed with ‘crane’ removed

Figure 4.17 Binary DeepFool applied to Clarifai API and pics_bmp/crane-building.pdf.bmp

(a) Original, 0.9412 for ‘wolf’ (b) Perturbed with ‘wolf’ removed

Figure 4.18 Binary DeepFool applied to Clarifai API and pics_bmp/white-wolf-resize.bmp
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(a) Original, 0.9810 for ‘cucumber’ (b) Perturbed with ‘cucumber’ removed

Figure 4.19 Binary DeepFool applied to Clarifai API and pics_bmp/cucumber_1.bmp

4.3.2 Multi-label removal

We also tried the Algorithm 3 variant of DeepFool in order to remove multiple labels. It was performed
on pics_bmp/cropped-panda.bmp as seen in Figure 4.9. The original results can be seen below.

Labels (1-10) Score Labels (11-20) Score
wildlife 0.9967 monkey 0.9395
cute 0.9947 portrait 0.9383
animal 0.9906 fur 0.9340
nature 0.9901 zoo 0.9326
mammal 0.9842 panda 0.9298
endangered species 0.9785 species 0.9210
little 0.9709 endangered 0.9145
sit 0.9647 outdoors 0.9139
looking 0.9615 downy 0.8880
wild 0.9398 primate 0.8790

Table 4.8 Original Clarifai API results for cropped-panda.bmp

We attempted removing the labels ‘animal’ and ‘panda’. The result can be seen in Figure 4.20. We
also tried removing just the label ‘animal’ to see if ‘panda’ would be removed as well. In the previous
results for white-wolf-resize, we noticed that even though we just attempted to remove the label
‘wolf’, the labels ‘dog’ and ‘canine’ were also removed. Lo and behold, removing ‘animal’ also removed
the label ‘panda’. The results are summarized in the table below. The full results can be found in
report_results/clarifai_api and be reproduced with the subspace vectors
report_results/clarifai_api/cropped-panda.p.

(a) Original image (b) Multi-label removal (c) Single label removal

Figure 4.20 Multi-Label and Single Label Removal DeepFool applied to Clarifai API and
pics_bmp/cropped_panda.bmp
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Task Multi-label removal Single label removal
Targeted label(s) animal, panda animal

Removed labels

species, downy, endangered
species, endangered, primate,
panda, sit, fur, zoo, little, wild,

animal,

species, downy, endangered
species, endangered, primate,
panda, sit, fur, zoo, little, wild,

animal

Added labels

people (new top label), young,
facial expression, man, one, two,
embrace, no person, eye, love,

adult, face

people, young, facial expression,
man, one, two, no person,

woman, eye, side, view, adult,
face

Image norm 85.63820 85.63820
Perturbation norm 8.98982 7.89407
Number of
successful tries
with random noise
(out of 10)

0 for ‘animal, 9 for ‘panda’ 0 for ‘animal’, 4 for ‘panda’

Table 4.9 DeepFool results for Clarifai API and cropped-panda.bmp

Just removing ‘animal’ did a better job in that the perturbation norm is smaller so random noise
of the same norm could not achieve the same results. This seems to suggest that certain labels appear
together, but such a claim certainly requires a more in depth investigation. Perhaps multiple classifiers
are at work within the Clarifai model - first to pick out general classes such as ‘food’ and ‘animal’.
Consequently, a more detailed classifier may be used to identify the type of food or animal. It would
definitely be interesting to investigate this (with more credits!).
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5 Conclusion

Within a Python or IPython shell, one can conveniently apply DeepFool and analyze the results for the
following classifiers: ResNet50, VGG16, VGG19, Inception v3, Clarifai, Google’s Cloud Vision, IBM’s
Visual Recognition, Amazon Rekognition, and Microsoft’s Computer Vision. A few successful results
have been observed for ResNet50, VGG16, VGG19, Inception v3, and Clarifai. The implementation has
been made so that DeepFool can be easily extended to more classifiers.

I really enjoyed the experience of learning about the practical sides of machine learning, namely the
state-of-the-art software such as TensorFlow, Theano, and Keras and the commercial products provided
by some of the big names in industry. A lot of this software is still in the development stage or has
been recently released so the documentation was not always the source of solutions. Thankfully, there is
plenty of information on discussion boards and the developers are very quick to reply.

Future work

With the academic classifiers (ResNet50, VGG16, VGG19, Inception v3), it would be interesting to study
transferable and universal adversarial perturbations [21][22], namely investigating whether a perturbed
image could be computed offline on these academic networks to fool a blackbox classifier, such as one
of the APIs. Another variant of DeepFool that could be implemented is fixed label perturbation, i.e.
selecting a particular label to change the top label to.

Now that DeepFool is ready to use with several APIs (Clarifai, Google’s Cloud Vision, IBM’s Visual
Recognition, Amazon Rekognition, and Microsoft’s Computer Vision), obtaining a subscription for more
queries would allow for extensive testing. Moreover, extending to other API classifiers can be done with
relative ease and very few lines of code, as the main components of DeepFool are already implemented.

To improve the results for the blackbox classifiers, it might be of use to investigate a different type of
subspace vectors. The current ones consist of values drawn from the standard normal distribution (mean
0 and variance 1). Consequently, the vectors are constructed into an orthonormal basis. However, for
typical image vector lengths (299 · 299 · 3 = 268203 for an input to Inception v3 which is already very
small by image size standards), the individual components of the subspace vectors tend to be very small,
as the norm of the vector will be 1. For this reason, we had to use a relatively high value for δ when
estimating the gradients in order to cause a change in the image (as the pixel values would need to be
quantized into integers within [0, 255] when saved as an image). This differs from when working with the
academic networks as we can deviate the input very slightly. When working with a blackbox classifier,
however, we would not be able to have that large of a bit depth as to make such minuscule changes.
In any case, the higher δ value did not result in an adversarial perturbation that was too noticeable.
Perhaps a larger subspace dimension would also help in reducing the perturbation norm. This would,
however, require a subscription in order to afford more queries.
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