Sparse Recovery of Strong Reflectors With an Application to Non-Destructive Evaluation

Eric Bezzam^{1,2}, Adrien Besson¹, Hanjie Pan², Dimitris Perdios¹, Jean-Philippe Thiran^{1,3}, and Martin Vetterli²

¹Signal Processing Laboratory (LTS5) École Polytechnique Fédérale de Lausanne, Switzerland

²Audiovisual Communications Laboratory (LCAV) École Polytechnique Fédérale de Lausanne, Switzerland

³Department of Radiology of the University Hospital Center (CHUV) University of Lausanne (UNIL), Switzerland

IEEE International Ultrasonics Symposium, October 25, 2018

Outline

Motivation

Measurement setup

Problem statement

Proposed approach TOF recovery TOF matching Localization

Results

Conclusion

How can we reduce data rate / increase frame rate?

How can we reduce data rate / increase frame rate?

To what extent can recent signal processing techniques, e.g.:

- 1. Finite rate of innovation (FRI)
- 2. Euclidean distance matrices (EDMs)

be applied to ultrasound (US) imaging / localization?

Measurement setup: plane wave insonification

Time-of-flight (TOF) for element at \mathbf{s}_m and point at $\mathbf{r}_k = [x_k, z_k]^T$:

$$\tau(\mathbf{r}_k, \mathbf{s}_m, \theta) = (x_k \sin \theta + z_k \cos \theta)/c + \|\mathbf{r}_k - \mathbf{s}_m\|/c.$$

Objective

Problem statement

Given discrete measurements $\{y_m[n]\}_{n=0}^{N-1}$ at the element positions $\{\mathbf{s}_m\}_{m=0}^{M-1}$, estimate the locations of the reflectors $\{\mathbf{r}_k\}_{k=0}^{K-1}$.

 $^{^1\}text{C}.$ Prada and J.L. Thomas,"Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix," 2003.

Objective

Problem statement

Given discrete measurements $\{y_m[n]\}_{n=0}^{N-1}$ at the element positions $\{\mathbf{s}_m\}_{m=0}^{M-1}$, estimate the locations of the reflectors $\{\mathbf{r}_k\}_{k=0}^{K-1}$.

- Exploit minimum degrees of freedom (DOF): least amount of elements M and samples per element N.
- Continuous recovery.

 $^{^1\}text{C}.$ Prada and J.L. Thomas,"Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix," 2003.

Objective

Problem statement

Given discrete measurements $\{y_m[n]\}_{n=0}^{N-1}$ at the element positions $\{\mathbf{s}_m\}_{m=0}^{M-1}$, estimate the locations of the reflectors $\{\mathbf{r}_k\}_{k=0}^{K-1}$.

- Exploit minimum degrees of freedom (DOF): least amount of elements M and samples per element N.
- Continuous recovery.

Existing approaches discretize medium:

- Sparse deconvolution.
- Subspace approach $\Rightarrow K \leq M$.¹

 $^{^1\}text{C}.$ Prada and J.L. Thomas, "Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix," 2003.

Simple example

Localization with labeled TOFs

Recover reflector position from TOFs of at least two elements.

Proposed approach applied to simple example

TOF recovery

For K reflectors, we receive the following *pulse stream* at \mathbf{s}_m :

$$y_m(t) = \sum_{k=0}^{K-1} \underbrace{\frac{a_k}{2\pi \|\mathbf{r}_k - \mathbf{s}_m\|}}_{a_{m,k}} h\left(t - \underbrace{\tau(\mathbf{r}_k, \mathbf{s}_m)}_{\tau_{m,k}}\right),$$

where h(t) is known pulse shape.

²M. Vetterli, P. Marziliano, and T. Blu, "Sampling signals with a finite rate of innovation", 2002.

TOF recovery

For K reflectors, we receive the following *pulse stream* at \mathbf{s}_m :

$$y_m(t) = \sum_{k=0}^{K-1} \underbrace{\frac{a_k}{2\pi \|\mathbf{r}_k - \mathbf{s}_m\|}}_{a_{m,k}} h\left(t - \underbrace{\tau(\mathbf{r}_k, \mathbf{s}_m)}_{\tau_{m,k}}\right),$$

where h(t) is known pulse shape.

▶ 2K DOF:
$$\{a_{m,k}\}_{k=0}^{K-1}$$
 and $\{\tau_{m,k}\}_{k=0}^{K-1}$.

 $^{^2}$ M. Vetterli, P. Marziliano, and T. Blu, "Sampling signals with a finite rate of innovation", 2002.

TOF recovery

For K reflectors, we receive the following *pulse stream* at \mathbf{s}_m :

$$y_m(t) = \sum_{k=0}^{K-1} \underbrace{\frac{a_k}{2\pi \|\mathbf{r}_k - \mathbf{s}_m\|}}_{a_{m,k}} h\left(t - \underbrace{\tau(\mathbf{r}_k, \mathbf{s}_m)}_{\tau_{m,k}}\right),$$

where h(t) is known pulse shape.

- 2K DOF: $\{a_{m,k}\}_{k=0}^{K-1}$ and $\{\tau_{m,k}\}_{k=0}^{K-1}$.
- Finite rate of innovation (FRI) sampling and recovery.²
- At least $N \ge 2K + 1$ samples.

 $^{^2}$ M. Vetterli, P. Marziliano, and T. Blu, "Sampling signals with a finite rate of innovation", 2002.

11/18

An overview of Euclidean distance matrices (EDMs)

- Consider P points (elements and reflectors) {x_p}^{P-1}_{p=0} in a D-dimensional Euclidean space.
- For US, P = M + K and D = 2.

An overview of Euclidean distance matrices (EDMs)

- Consider P points (elements and reflectors) {x_p}^{P-1}_{p=0} in a D-dimensional Euclidean space.
- For US, P = M + K and D = 2.

• Entry at *i*-th row and *j*-th column of an EDM $\mathbf{E} \in \mathbb{R}^{(P \times P)}$:

$$\mathbf{E}_{(i,j)} = \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \mathbf{x}_i^T \mathbf{x}_i - 2\mathbf{x}_i^T \mathbf{x}_j + \mathbf{x}_j^T \mathbf{x}_j.$$

IEEE IUS 2018, Eric Bezzam

An overview of EDMs (cont.)

► Matrix formulation with $\mathbf{X} = [\mathbf{x}_0, \dots, \mathbf{x}_{P-1}]$: $\mathbf{E} = \mathbf{1} \operatorname{diag}(\mathbf{X}^T \mathbf{X})^T - 2\mathbf{X}^T \mathbf{X} + \operatorname{diag}(\mathbf{X}^T \mathbf{X}) \mathbf{1}^T$.

An overview of EDMs (cont.)

- ► Matrix formulation with $\mathbf{X} = [\mathbf{x}_0, \dots, \mathbf{x}_{P-1}]$: $\mathbf{E} = \mathbf{1} \operatorname{diag}(\mathbf{X}^T \mathbf{X})^T - 2\mathbf{X}^T \mathbf{X} + \operatorname{diag}(\mathbf{X}^T \mathbf{X}) \mathbf{1}^T$.
- For $P \ge D \Rightarrow \operatorname{rank}(\mathbf{X}^T \mathbf{X}) \le D \Rightarrow \operatorname{rank}(\mathbf{E}) \le D + 2$.
- Assuming perfect TOF recovery, we have entries of EDM but need to determine their position.

TOF matching

- 1. With D + 2 elements form an EDM with maximum rank.
- 2. Augment EDM with different combos of recovered TOFs.³
 - Estimate / remove transmit time and multiply with c.
 - Incorrect combos will increase rank.
 - Correct ones will not!

³I. Dokmanić, R. Parhizkar, J. Ranieri, and M. Vetterli, "Euclidean distance matrices: essential theory, algorithms, and applications," 2015.

TOF matching

- 1. With D + 2 elements form an EDM with maximum rank.
- 2. Augment EDM with different combos of recovered TOFs.³
 - Estimate / remove transmit time and multiply with c.
 - Incorrect combos will increase rank.
 - Correct ones will not!

³I. Dokmanić, R. Parhizkar, J. Ranieri, and M. Vetterli, "Euclidean distance matrices: essential theory, algorithms, and applications," 2015.

TOF matching

- 1. With D + 2 elements form an EDM with maximum rank.
- 2. Augment EDM with different combos of recovered TOFs.³
 - Estimate / remove transmit time and multiply with c.
 - Incorrect combos will increase rank.
 - Correct ones will not!

K TOFs, M channels $\Rightarrow K^M$ combinations.

³I. Dokmanić, R. Parhizkar, J. Ranieri, and M. Vetterli, "Euclidean distance matrices: essential theory, algorithms, and applications," 2015.

Simulation with Field II

- ► 50 unique configurations of 10 reflectors at varying SNR.
- ▶ 128 transmit elements, single-cycle square wave excitation, and Gaussian-modulated sinusoidal impulse response (f_c = 5.208 MHz and bw = 67 %).

In-vitro non-destructive evaluation scenario

- Aluminum block with drilled holes.
- 64 transmit elements, $f_c = 5 \text{ MHz}$.

• Exploit minimum DOF for localization.

- ▶ FRI along each element \Rightarrow $N \ge 2K + 1$ samples.
- EDM across elements $\Rightarrow M \ge 3$ elements (using Gram matrix).

⁴More detail in: E. Bezzam, "Sampling at the rate of innovation of ultrasound imaging and localization," 2018.

FÉDÉRALE DE LAUSANN

Exploit minimum DOF for localization.

- FRI along each element $\Rightarrow N \ge 2K + 1$ samples.
- EDM across elements $\Rightarrow M \ge 3$ elements (using Gram matrix).
- In the paper:⁴
 - More on TOF recovery.
 - Dealing with noise for TOF recovery and matching.
 - Easing the combinatorial matching problem.

⁴More detail in: E. Bezzam, "Sampling at the rate of innovation of ultrasound imaging and localization," 2018.

THANK YOU FOR YOUR ATTENTION!

Eric Bezzam

- 🖂 eric.bezzam@epfl.ch
- 🖉 @EricBezzam
- https://github.com/ebezzam
- Signal Processing Laboratory (LTS5)
- 🟛 École Polytechnique Fédérale de Lausanne

